Меню

Мощность теплового излучения солнца

Мощность солнечного излучения

introСолнечная энергия поступает к нам на Землю в виде электромагнитных волн. Часть рассеивается , часть отражается. К поверхности Земли доходит всего часть от первоначального значения.

Солнечную энергию, поступающую к нам на планету, можно считать практически неисчерпаемым источником. Почему «практически»? Дело в том, что Солнце вырабатывает энергию благодаря термоядерному синтезу — процессу, происходящему в самом центре Солнца, при котором четыре ядра водорода под действием давления окружающей среды сливаются в одно ядро гелия. При этом Солнце каждую секунду теряет в массе 4000000 т. Тем не менее ученые полагают, что его состояние не изменится в течении 10 млрд лет. Но так как длительность этого процесса неизмеримо больше, чем существует само человечество, то солнечную энергию без тени сомнения можно назвать неисчерпаемым источником энергию.

Поток солнечной энергии – основной источник энергии на Земле. Количество солнечной энергии, которое излучается Солнцем, зависит от времени года, времени суток, и от состояния атмосферы над точкой наблюдения. За единицу солнечного излучения принято считать количество этого излучения, проходящего через площадку в 1 м?, расположенную перпендикулярно потоку излучения.

Всего мощность солнечного излучения составляет около 3.8*10 26 Вт и представлен всем спектром электромагнитных волн. Это приблизительно в 50 раз превосходит энергию, которую можно было бы извлечь из мировых разведанных запасов горючих ископаемых, и примерно в 300 тыс. раз – ежегодного потребления энергии. Основная масса солнечного излучения приходит на ультрафиолетовую, видимую и инфракрасную части спектра.

На верхней границе атмосферы величина поступающей от Солнца энергии колеблется от 1321Вт/м 2 до 1412 Вт/м 2 в связи с различным расстоянием Земли от Солнца в разные времена года. Средняя величина, которая чаще всего используемая при расчетах, – приблизительно 1370 Вт/м 2 . Эту величину еще называют солнечной постоянной.

Так как Земля имеет круглую форму, то наиболее максимальный поток солнечного излучения, попадающий на квадратный метр атмосферы, наблюдается в районе экватора.

map

Наша планета может принимает солнечную энергию той стороной, которая обращена к Солнцу. Вторая же половина всегда затемнена , так как обращена в другую сторону. При этом лишь 70% энергии поступает на поверхность Земли, остальная отражается и рассеивается в атмосфере. Погодные условия также влияют на прохождение солнечных лучей к поверхности Земли. Максимальное значение в 1000 Вт/м 2 можно получить на поверхности, перпендикулярной к солнечным лучам в ясный день.

Отсюда вытекает самая большая проблема – как максимально эффективно уловить солнечные лучи, чтобы как можно ближе приблизиться к максимальному значению солнечной энергии – солнечной постоянной.

Наиболее выгодное место по «сбору» солнечной энергии на нашей планете, как сказано выше, — это экватор. В связи с этим и был задуман международный инновационный проект Desertec, включающий в себя постройку в пустыне Сахара крупнейшей системы солнечных электростанций в мире. А полученную электроэнергию транспортировать в Европу. По замыслу, это должно дать 100ГВт чистой энергии. Пока этот проект находится в стадии согласования, проектирования.

И все таки, для обеспечения все более растущего спроса на энергию, потребуется использовать все более большие площади для установки солнечных панелей. Ведь чем больше площадь, тем больше вырабатывается энергия. Desertec, к примеру, по словам разработчиков должен занять площадь в 300 км 2 . Что не так уж и мало. Другое дело, что эти солнечные электростанции будут располагаться на бескрайних просторах пустыни.

Есть другой вариант – размещать солнечные панели прямо на орбите на искусственных спутниках. Это даст возможность круглосуточно получать электроэнергию. Погодные условия также не будут оказывать влияние, поэтому износ оборудования будет меньше.

Но прежде чем размещать искусственные спутники, нужно решить ряд вопросов, связанных с хранением и с передачей накопленной энергии на Землю.

Читайте также:  Измерителем мощности поликлиники является

space-solar-farm

Компания Mitsubishi Electric Corporation and IHI Corporation серьезно взялись за идею создания орбитальной солнечной станции мощностью в 1 ГВт. К 2015 году запланирован первый этап проекта– испытательный запуск спутника с фотопанелями мощностью 10МВт. Загвоздка в этом проекте состоит в передаче энергии от космической станции на Землю. Ученые предлагают решить эту проблему, используя радиочастоты для передачи энергии. Спутник посылает радиочастоты на приемник на Земле, который преобразовывает обратно в электроэнергию.

solarbird

То, что солнечной энергии хватит на всех, не вызывает сомнения. Осталось научиться эффективно её «подобрать».

Источник



Тепловой поток солнечного излучения. Практические величины для расчетов. Пиковая нагрузка теплового потока солнечного излучения на прозрачное остекление различной площади. Мощность солнечного излучения.

Тепловой поток солнечного излучения. Практические величины для расчетов. Пиковая нагрузка теплового потока солнечного излучения на прозрачное остекление различной площади.

На практике слишком часто недооценивается вклад солнечного излучения в тепловой балланс помещения. Проблема состоит не столько в том, что слишком велик средний вклад теплового излучения (около 350 Вт/м 2 = 84 кал/(с*м 2 ) = 0.35 кВт*часов/(час *м 2 ) для основной части территории РФ в течение светового дня), сколько в пиковой величине потока солнечного излучения.

Для начала приведем характерные величины потоков солнечного излучения для полюсов и экватора Земли:

Экватор: 420 Вт/м2 — среднее значение, а 1000 Вт/м2 пиковое значение
Полюса: 170 Вт/м2 — среднее значение, а 400 Вт/м2 пиковое значение

Как ни странно, но на большей части территории РФ кроме побережья Северного Ледовитого океана пиковое значение солнечного излучения составляет около 900 Вт/м 2 = 215 кал/(с*м 2 ) = 0.9 кВт*часов/(час *м 2 ). Или около 1 киловаттчаса (кВт*ч) в час через стандартное окно на солнечной стороне дома в солнечный день.

Чем тепловой поток в облачный день отличется от теплового потока в солнечный день? Он ниже примерно в 2 раза.

Помогают ли шторы защитить помещение от солнечного излучения? Весьма незначительно, поскольку тепло, выделяющееся на шторах, остается внутри помещения. Чем ближе шторы находятся к стеклу, тем большая часть тепла отражается на улицу. Идеально — непрозрачные белые глянцевые шторы вплотную к стеклу (см. коэффициенты поглощения солнечного излучения). А еще лучше — ставни.

Источник

Методы расчета мощности солнечных батарей

На земле существует большое количество альтернативных источников энергии. Каждый из них имеет свои особенности при использовании. И одним из самых экологичных является энергия солнечного света. На самом деле мощность солнечной энергии используется человечеством с древних времен и в различной форме:

Все это непостоянно, нагретые солнцем за день предметы ночью быстро остывают. Человечество долго думало о том, как бы сохранить мощность солнечной энергии. И только в XXI-ом столетии стало использовать ее для накопления в виде тепла и электричества. Получение электрической мощности из солнечного излучения – это довольно действенный способ. На сегодняшний день он используется для обеспечения энергией от одиночных домов до небольших поселений или комплексов. И даже учитывая крайне небольшое время качественного солнечного излучения, популярность использования панелей не утихает. Но чтобы определить целесообразность этого генератора, необходимо посчитать мощность солнечных батарей. Об этом речь пойдет ниже в статье, прежде необходимо ознакомиться с понятием «солнечное излучение».

Что такое солнечная энергия?

Солнечная энергия – на самом деле это огромная сила, но чтобы ее получить, необходимо приложить немало усилий. Все дело в том, что технологии изготовления солнечных генераторных панелей имеют высокую цену и порой при расчете выгоды может оказаться так, что установка таких у себя дома будет окупаться на протяжении десятков лет, при условии постоянно ясных дней. А на самом деле эта цифра увеличится как минимум в 5 раз, и выгода будет заметна только вашим внукам или правнукам. И то, если конструкция панелей будет надежна и сможет столько прослужить. В идеальном расчете современные солнечные батареи могут выдавать до 1,35 кВт/м кв. и для получения 10 кВт потребуется всего 7,5 кв. м панелей. Но это в идеальных условиях. В реальности — площади солнечных батарей потребуется в 5-6 раз больше для получения той же мощности.

Читайте также:  Мощность нагрузки энергопринимающих устройств

КПД современных солнечных панелей

Современные солнечные панели обладают не так уж и большим КПД. Фотоэлемент, площадью 1 кв. м выдает в идеальных условиях 1 кВт электрической энергии. Но это условие справедливо, если расстояние от поверхности панели минимально. И солнце находиться над ней. А лучи – строго перпендикулярно к плоскости и прозрачность атмосферы составляет не менее 100%. Таким условиям соответствует лишь вершина горы в тропической зоне и ясную погоду. В нашей климатической зоне можно добиться максимум 20%. Следовательно, с 1 кв. м можно получить от 150 до 600 Вт электрической энергии. Все дело в том, что интенсивность солнца в наших широтах весьма мала. К примеру, рассматривая российские города от Архангельска до Южно-Сахалинска, за месяц эксплуатации солнечной батареи можно получить максимум 209.9 кВтч/м кв. И то, эта цифра справедлива только в Сочи. При установке солнечной панели в Архангельске, месячный максимум получится не более 159.7 кВтч/м кв.

В средних широтах, в которых собственно мы с вами и проживаем, показатель мощности солнечной энергии соответствует уровню 100 Вт/кв. м. Но и эти данные весьма неточные. Потому что при повышенной облачности эта цифра будет уменьшаться до 2 и более раз.

Виды солнечного излучения

В зависимости от потока излучение разделяется на 2 вида: рассеянное и прямое. В зависимости от вида освещения выбирается угол наклона панели, тем самым повышая КПД установки. При прямом излучении угол должен быть строго определен. При рассеянном излучении этот показатель не важен. Поскольку интенсивность освещения во всех точках пространства примерно равна. Но между двумя этими разновидностями имеется существенное отличие. Оно заключается в мощности солнечного излучения на квадратный метр. В первом случае она многократно раз превышает второй, обеспечивая панель мощным потоком фотонов. Но таких ясных деньков в наших широтах, да и по всей планете, не так уж много. Поэтому производителям панелей приходиться использовать весь научно-технический потенциал, чтобы получить максимум энергии из того излучения. Такие технологии станут многим не по карману. Не говоря уже о сроке окупаемости, который может стать непостижимым на нашем веку.

Как распределяется энергия в солнечном спектре?

Солнце представляет собой универсальный генератор, который вырабатывает потоки световой энергии не только различной мощности, но и различной частоты, что говорит о возможности разложения солнечного света в спектр. Весь его охватить не удастся, потому что принимающее тело должно быть идеально черного цвета. Тем более что не все виды излучений доходят до поверхности земли. Самые активные и энергонесущие потоки поглощаются другими телами в космосе и атмосфере. Задачей человечества стало определение диапазона частот, в котором поток световой энергии максимален. Традиционно спектр раскладывается не по частотам, а по длинам волн. И его грубо можно разделить на 3 зоны:

  • Ультрафиолетовая, ей соответствуют длины волн от 0 до 380 мкм.
  • Видимый свет, находиться в диапазоне от 380 до 760 мкм.
  • Инфракрасный, соответствует участку с длинами волн от 760 до 3300 мкм.

Зоной, где энергия фотонов самая высокая, является именно первый диапазон, но в нем частиц ничтожно мало, по сравнению с видимым диапазоном света. Поэтому для получения электрической энергии стали использовать именно видимый и инфракрасный диапазоны с длинами волн от 380 до 1800 мкм. Все, что выше относится к радиочастотному диапазону и энергия здесь также мала, по причине практически полного отсутствия энергии фотонов, несмотря на их большое количество и достаточную мощность солнечной энергии.

Читайте также:  Заполните таблицу где n мощность алфавита і информационный вес символа алфавита

Проблема установки солнечных батарей

Главной проблемой установки солнечных батарей в наших климатических условиях является существенное различие в длительности светового дня в зависимости от поры года. Самый короткий день почти в 2,5 раза меньше самого длинного, что сказывается и на энергии излучения, которому зимой еще приходиться преодолевать и более толстые слои атмосферы. Следовательно, использование солнечных батарей в зимний период не даст никакой выгоды, а в летний период жарким днем выдаст не меньше энергии, чем на экваторе.

Что необходимо учитывать при расчете солнечного генератора

Солнечный свет, как и любая другая физическая величина, имеет ряд параметров. Они должны использоваться при расчете генератора. К ним относятся:

  • Уровень освещенности или мощность солнечного излучения на квадратный метр. Под ним подразумевается усредненное значение солнечного излучения. Оно измеряется в верхних слоях атмосферы Земли и расположенного перпендикулярно световым потокам. На примере Сочи эта величина равна 1365 Вт.
  • Максимальная мощность излучения солнца. Это полезная световая энергия. Она достигает поверхности Земли на уровне моря на экваторе и в безоблачный день. В среднем она равна 1 кВт/м кв.
  • Инсоляция – это усредненное время, в течение которого солнце освещает поверхность с максимальной интенсивностью. Обычно оно находится в пределах от 3 до 5 часов по российской территории.
  • Общая энергия излучения – величина, измеряемая за день облучения поверхности. Она определяется как произведение 1 кВтч и количества инсоляционных часов.
  • Мощность солнечной энергии – величина энергии, рассчитанная за сутки (24 часа). Этот показатель рассчитывается как соотношение общей энергии за день к 24 часам.

Размещение панелей

В наших климатических условиях важно предусмотреть систему автоматической коррекции положения панелей. Поскольку интенсивность солнечной энергии изменяется с течением дня, очень

Автоматическая коррекция положения панелей

Необходимо, чтобы лучи падали на приемные элементы перпендикулярно. Благодаря этому выбивая из них больше заряженных электронов. Но чтобы это обеспечить придется организовать поворот или наклон солнечных батарей с ходом солнца. При угле падения лучей в 30 градусов, коэффициент отражения лучей составляет не менее 5%. А 95% световой энергии оказываются полезными. При увеличении угла отражения до 60 градусов, потери вырастают вдвое. А при угле отражения 80 градусов коэффициент потерь находиться на отметке 40%. Но кроме угла отражения немаловажное значение имеет эффективная площадь перекрытия панели солнечным потоком. Эта величина расчетная. И находиться из отношения реальной площади к синусу угла между плоскостью и направлением солнечных лучей. В итоге: для получения постоянно качественного потока, панели необходимо время от времени поворачивать к солнцу. А это соответственно будет требовать определенных технологий, что оказывается весьма дорогостоящим удовольствием.

Ориентация панелей в одной плоскости

Можно пойти и простым путем, ориентировать солнечную батарею в одной плоскости под определенным углом. Например, для Москвы, расположена на 56 градусах широты) угол наклона к горизонту составит 56 градусов. А угол отклонения от вертикали 34 градуса. Тогда потребуется лишь обеспечить панели вращением в одной плоскости и возврат ее в исходную точку. Все это удорожает систему и делает ее менее надежной.

При конструировании системы поворота панелей большое значение имеет вес рамы, на которой будут располагаться фотоэлементы. И как следствие получается, что на вращение неоправданно расходуется мощность солнечной энергии. И это снижает количество полезной энергии.

Выбор фотоэлектрической системы для построения солнечного генератора

Для построения действительно качественного солнечного генератора необходимо учесть следующие данные:

Источник