Меню

Мощность тока с двумя транзисторами

Транзисторы для начинающих

Безопасная зона работы

Ток коллектора

В начале вопрос: может ли быть ток коллектора бесконечно большим? Теоретически, увеличением тока базы, вы можете свободно увеличивать ток коллектора.

Тем не менее, в той или иной схеме максимальный ток коллектора транзистора только в состоянии насыщении и, главное, не определяется транзистором, а только напряжением питания и сопротивлением нагрузки. При снижении сопротивления нагрузки увеличивается ток.

Как вы догадались, этот ток нельзя увеличивать произвольно. Каждый транзистор имеет максимальный ток коллектора, обозначается в каталогах производителей — ICmax.

Значение этого тока, зависит от конструкций и толщины переходов транзистора.

При протекании тока через сопротивление, выделяется тепло. Вы наверное, догадываетесь, или, может быть, вы видели своими глазами, что связи между слоями кремния транзистора и проводники сделаны из тонкой проволоки. Хотя ее часто делают из золотой проволоки, они при избыточном токе ведут себя как самые обычные предохранители – разогреваются и перегорают.

Не только проводники. Кремниевая структура транзистора так же имеет не большие геометрические размеры. Если пропустить большой ток через эту структуру имеющую малое сечение, мы получим, ток очень большой плотности. Не забывайте, мы имеем дело с чувствительной структурой полупроводника и чрезмерное увеличение плотности тока приводит не только к повышению температуры, а также целый ряд других негативных явлений. Я буду говорить только об уменьшении коэффициента усиления по току (β) с ростом тока коллектора.

Таким образом. Ограничение коллекторного тока производителем обосновано допустимой плотностью тока, и температурой плавления структуры, вы не можете ее превышать.

Если вы думаете о мгновениях, то можно придти к выводу, что если транзистор будет работать в импульсном режиме, открылся, пропустил ток только на короткое мгновение, за это мгновение структура не успевает разогреться и расплавиться. Таким образом, ток в импульсе может быть и больше максимальной ток в не прерывном режиме.

Вы правы! В каталогах часто приводят максимальном токе коллектора при непрерывной работе и максимальный ток коллектора для импульса. Вы можете это увидеть в характеристиках силового транзистора.

Но сейчас, мы не будем связываться с этим вопросом. Как вы думаете или если не превышать ток Icmax каталога, и напряжения UCEmax, ваш транзистор не находится в опасности?

Рассеиваемая мощность

Мы начинаем обсуждать важную и, как выясняется – трудную тему. Но вы должны понять ее! Самую сложную информацию я дам вам в следующем месяце, а сейчас все элементарно.

Наверное, вы слышали такой термин: мощность транзистора.

Что такое мощность транзистора? И что такое общая мощность?

Термин мощность относиться ко многим устройствам:
Двигатель имеет мощность 100 Вт,
Электрический обогреватель имеет мощность до 2000 Вт,
Паяльник 40 Вт,
У нас есть две лампочки в 60 Вт, одна на 220 Вольт, другая на автомобильные 12 Вольт.

Все эти машины используют электроэнергию от источника и конвертируют ее в другие формы энергии: тепло в механическую энергию (двигатель) энергию света (лампа).

Чем больше мощность, тем больше энергии потребляет в каждый момент это устройство. Обе эти лампы потребляют ту же мощность 60 Вт. В чем разница? Конечно, что одна работает при напряжении 12 вольт и потребляет 5 ампер тока (12Вх5A=60W) а другая, которая работает при напряжении 220 В, потребляет немного больше чем 0,27 ампер (что также дает 220×0,27=60 Вт).

Таким образом, одни и те же мощности могут быть достигнуты с различными токами и напряжениями. Вот простые формулы, необходимые для расчета мощности. Я беру электрические оборудование, работающего на постоянном токе (переменный ток работающий на активное сопротивление). Запомните раз и навсегда:

Возвращаясь к вопросу о мощности транзистора: это мощность, рассеиваемая нагрузкой? Может мощность, рассеиваемая транзистором? Или, может быть даже что-то еще? Ранее я объяснил вам, что коллекторная цепь – это регулируемый источник тока, а не переменный резистор, однако это не меняет тот факт что, когда через структуру транзистора будет течь ток будут потери мощности на тепло. Величина этих потер, определяется по формуле: P UCE IC Где Uce это напряжение между коллектором и эмиттером, Ic – ток коллектора. Строго говоря, мы должны так взять во внимание потери мощности в базовой цепи Ube*Ib, но так как эта мощность очень маленькая, по сравнению с мощностью рассеваемой на коллекторе, она не учитывается.

И что происходит дальше с этим теплом? Если оно остается в транзисторе?

Ни в коем случае! У вас нет ни каких сомнений, что если транзистор не будет хорошо термоизолирован от окружающей среды, это выделяемое тепло приведет к повышению температуры. И это вредное тепло необходимо рассеять во внешней среде. Смотри рисунок 43.

Тут работает простой принцип: тепло передается от горящего к холодному.

Вы уже знаете, что такое потери мощности транзистора. Но именно здесь, кроиться кардинальная ошибка начинающих. Они рассуждают следующим образом: если транзистор может работать при максимальном напряжении коллектора UCE0 и максимальном токе коллектора Icmax, максимальная «мощность транзистора» равна Р = UCE0 × ICmax.

Это абсолютная ерунда, нельзя так просто рассчитать мощность. Посмотрите в каталог любого транзистора и найдите там его мощность, она обозначается Ptot. Запомните раз и навсегда: общая мощность транзистора всегда меньше чем произведение Р = UCE0 × ICmax.

А теперь вычислите. Какая мощность рассеивается на транзисторе, а какая на нагрузке схем на рисунке 44. Возьмем схему 44а, сначала рассчитаем напряжение на резисторе, потом на транзисторе, а потом обе мощности. Напряжение на резисторе:

Мощность рассеиваемая на резисторе:

(То же самое можно вычислить по формуле ) Напряжение на транзисторе:

Мощность рассеиваемая на транзисторе:

Для других схем на рисунке 44, рассчитайте самостоятельно.

Как вы можете видеть, расчеты совсем не сложные. Таким образом, мы идем дальше. Вы уже знаете три условия работы транзистора:
1 Напряжение питания не должно быть больше, чем указанное в каталоге напряжение UCE0. Самое высокое напряжение присутствует на коллекторе транзистора в состоянии отсечки.
2 Ток коллектора не может быть больше, чем ICmax. Самый большой ток протекает через транзистор в состоянии насыщения.
3 Рассеиваемая мощность транзистора, ни при каких обстоятельствах не превышает допустимую Ptot.

Рассмотрим эти три ограничений на примере транзистора с параметрами (UCE0 = 25В, ICmax = 100mA, Ptot = 500 мВт) смотри рисунок 45. Если напряжение и ток на графике это прямые лини, тогда линия, представляющая мощность Р = U × I) будет иметь вид гиперболы, как это показано на рисунке 45. Однако если ток и напряжение отложить на логарифмических шкалах, то кривая мощности станет прямой. Что видно на рисунке 46. Тут нет никакого мошенничества — рисунки 45 и 46 показывают одни и те же значения, но не много по разному: в линейном масштабе, и в логарифмическом. В каталогах приводятся характеристики похожие на рисунок 46. На Рисунке 47 вы можете найти копии конкретных характеристик транзисторов BD243 и BD244, взятых из каталога. Тут для вас есть масса информации, если транзистор будет работать в импульсном режиме, то мгновенный ток и мгновенную мощность можно будет взять больше чем при постоянной работе. Заметим, однако, что характеристика на рисунке 47 имеет еще одно ограничение по сравнению с рисунком 46. Это «отсечение», что является дополнительным ограничением, связанным с явлением так называемого вторичного пробоя (второй пробой). Появление вторичного пробоя приводит к повреждению транзистора. Подробнее об этом можно найти в книгах. Я не буду сейчас объяснять, потому что это сейчас не нужно. В любом случае, у нас есть еще одно ограничение.

В любом случае, мы достигли пиковой точки нашего сегодняшнего обсуждения: проектируемая схема должны вписываться в безопасную рабочую область транзистора. В каталогах она часто обозначается SOAR или SOA. Это сокращение от английского область безопасной работы (Area). Рисунок 47 показывает безопасную рабочую область для транзистора BD243 и BD244.

Строго говоря, при проектировании схемы вы должны найти график показывающий область безопасной работы транзистора (такой, как на рисунке 47), выполнять расчеты, или выбрать на графике ток транзистора и убедиться что мощность находиться в разрешенной зоне. Примеры, которые мы обсуждали несколько минут назад это простейшие случай – транзистор работает на активное сопротивление нагрузки. Во многих схемах, дело обстоит сложнее. Так, например, транзисторы в усилителе мощности выходного каскада также должны работать в безопасной зоне работы при любых условиях — даже в случае короткого замыкания на выходе, подключении к емкостной нагрузкой (длинный кабель) или индуктивной (динамик). В базовый курс мы не будет иметь дело с такими расчетами. Я просто хочу, чтобы указать, на проблему, а вы получите для себя со временем достаточно знаний, чтобы справиться с более сложными задачами.

На данный момент, вы можете придерживаться простого правила: используйте транзисторы с параметрами выше необходимого минимума. На практике, как правило, для безопасной работы используют транзисторы с параметрами на 50…100% выше, чем расчетные, напряжение, ток, мощность. Тогда у нас есть запас прочности, и не придется беспокоиться о надежности. Использование транзисторов «больше и сильнее» также выгодно по ряду других причин при возможной небольшая разнице в цене, которая не имеет значения. Но не подобает использовать силовые транзисторы и транзисторы высокого напряжения, там где это не нужно.

Казалось бы, что все просто и легко, при выборе условий работы транзистора (напряжение питания и сопротивление нагрузки) и можете сами установить транзистор в разрешенный диапазон. Действительно учесть напряжение и максимальный ток, это просто, но потери мощности определить не так просто. На кону здесь два важных вопроса вы должны понять:
— Зависимость потерь мощности от напряжения питания и сопротивления нагрузки,
— Вопрос отвода тепла от транзистора.

Сегодня мы ответим только на первый вопрос.

Часто, не требуется считать потери мощности указанным выше способом. На практике, как правило, нас интересует самый худший случай. Если рассчитать потери мощности в худшем случае нет необходимости проводить дальнейшие расчеты.

Рисунок 48 помогает понять, что я имею в виду, говоря о худшем случае. Транзистор работает с сопротивлением нагрузки RL при постоянном напряжении питания (в данном случае, RL = 250 Ом, Usup = 20В).



Что можно понять из того рисунка?

Рисунок 48b это то же самое что и на рисунке 44г. Когда нет базового тока, то нет и коллекторного тока и напряжение на коллекторе равно напряжению питания. Когда вы пустите ток в базу, и начнете его увеличивать, увеличиться ток коллектора а напряжение на нем уменьшиться. Зная напряжение питания и сопротивление нагрузки RL можно выполнять вычисления для нескольких или нескольких десятков значений напряжения UT. Вы можете рассчитывать не только ток коллектора, но и мощность, рассеиваемая на нагрузке, и на транзисторе для различных напряжений коллектора (т.е. различных токах базы). По этим значениям можно построит график такой как на рисунке 48г.

Читайте также:  Сила тока в проводке дома

На этом рисунке синей линей я изобразил зависимость тока от напряжения Uсе (напряжение на транзисторе), шкала тока находиться слева. Здесь простая нагрузка Rl. Красная линия – потери мощности на транзисторе. Фиолетовая, какая мощность рассеивается на нагрузочном резисторе. (Внимание! Шкала мощности нарисована справа).

Примечание: в отсутствие тока базы и тока коллектора, потери мощности транзистора равны нулю, потому что P = Usup × 0. На рисунке 48б показана точка А. Очевидно в состоянии отсечки ток не течет, и нет потери мощности на транзистор и на нагрузке.

Теперь обратите внимание на то, что происходит в состоянии насыщения – посмотрите на точку B. Хотя сейчас ток очень большой, но напряжение на транзисторе очень мало (Ucesat напряжения насыщения десятки или сотни милливольт). Таким образом, рассеивание тепла в режиме насыщения транзистора мало, можно сказать, близко к нулю, потому что P = Ucesat × I. Вы удивлены?

Оказалось, что в состоянии насыщения, когда ток самый большой, рассеиваемая мощность транзистора практически равна нулю! Да, это так! Высокая мощность (P = Usup × I) рассеивается, на сопротивлении нагрузки, а не на транзисторе. Короче говоря, если транзистор работает как переключатель, во время открытия и насыщения он выделяет очень мало тепла. Прямо сейчас вы должны знать, что потери при импульсе будут только на короткое время переключения. К этой проблеме мы еще вернемся. В настоящее время нас интересует работа в линейном режиме.

Как вы можете видеть на рисунке 48b, сама большая мощность рассеивается на транзисторе когда напряжение на коллекторе равно половине напряжения питания. И это тот самый худший случай, о котором я упоминал. Худший, так как потери мощности на транзисторе самые большие. На рисунке 48б это показано точкой С.

Как вы можете видеть, потери мощности на транзисторе при этом равна потери мощности на нагрузке. Если это так, то максимальная рассеиваемая мощность, при каких пропорциях, может быть рассчитана очень просто: потому что в худшем случае рассеиваемая мощность транзистора равна рассеиваемой мощности на сопротивлении нагрузки RL. Тогда значение напряжения делим на две равные части и считаем


Это расчетная мощность, очевидно, не может быть больше чем указанная в каталоге мощность транзистора Ptot.

Эта формула позволяет вычислить минимальное сопротивление нагрузки для данного напряжения питания и мощности из каталога:

По ней также можно рассчитать максимальное напряжение для данного сопротивления нагрузки и выбранной мощности

Вы можете не быть орлом в математике, но эти формулы нужно запомнить или записать себе на видном месте.

Можно спросить, как эти расчеты соотнести с кривой допустимой мощности рассеивания на рисунках 45 и 46?

Это интересный вопрос!

Давайте посмотрим вместе, смогут ли наши транзисторы с характеристиками на рисунках 45 и 46 работать в схеме, показанной на рисунке 48а при напряжении 25В с сопротивлением нагрузки 250Ω, где напряжение на транзисторе может плавно изменяться от нуля до полного напряжения?

Рассчитаем потери мощности в худшем случае:

Потому что во время работы может возникнуть самая тяжелая ситуация, и наш транзистор будет перегружен. Но если он будет работать в ключевом режиме, т.е. находиться в одном из двух состояний: отсечки или насыщения. Так как в обоих этих условиях мощность, рассеиваемая на транзисторе равна или близка к нулю, насколько это возможно. И нам не нужно, прибегать в расчетах к наихудшему случаю, потому что в схемах переключения такое состояние не встречается.

Возвращаясь к рисунку 45, можно сказать, что мы не превысили допустимые потери мощности, и наша нагрузка находиться в безопасной рабочей области транзистора. Некоторые примеры можно найти на рисунке 49 при простой нагрузке для различных напряжений питания и различные сопротивлений.

На рисунке 49 нагрузка показана прямой линией. Попробуйте самостоятельно построить подобных линий на рисунках 46 и 47. Будет ли это легко? Проверьте, построив несколько точек.

В реальной схеме транзистор будет работать при напряжениях Usup гораздо меньше, чем допустимо напряжения UCE0, и сопротивление нагрузки в коллекторе будет ограничивать максимальный ток до величины, значительно меньше, чем ICmax. Как я уже сказал, нормальный запас здесь 50 .. 100%. А теперь поупражняйтесь самостоятельно.

Задача 1

Транзистор имеет следующие параметры: UCE0=25V, ICmax=300mA, Ptot=100mW. Дорисуйте на рисунке 50 кривые максимальной выходной мощности 100 мВт. Рассчитайте максимально мощность (в худшем случае) при условии транзистора в следующих условиях:
1.Uzas = 10V, RL = 1kΩ
2.Uzas = 25V, RL = 390Ω
3.Uzas = 9V, RL = 51Ω
4.Uzas = 25V, RL = 100Ω

Отметьте эти случаи на рисунке 50. Может ли транзистор может работать при таких условиях?

Источник

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.

Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.

Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Читайте также:  Формула для определения номинального тока двигателя

Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Источник

Читаем электрические схемы с транзистором

В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор, мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух резисторов и транзистора.

Управление мощностью с помощью транзистора

Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:

На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно, мощность свечения самой лампы.

Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.

Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения. То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора Iк.

Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора , который также течет и через лампочку накаливания.

Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.

Читайте также:  Способ освобождения человека от действия электрического тока

Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉

И еще один небольшой нюанс.

Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера. Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.

Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники – мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.

Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным.

Регулятор свечения лампочки на транзисторе

Ну а теперь дело за практикой. Собираем схему в реале:

Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:

Кручу еще чуток и лампочка светит в пол накала:

Выкручиваю переменный резистор до упора и лампочка тухнет:

Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.

Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:

Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:

Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил 😉

Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?

Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная. В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток. Вспоминаем формулу выделяемой мощности на нагрузке: P=I 2 R. Переменный резистор сгорит (проверено не раз на собственном опыте).

В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.

Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.

Резюме

Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.

Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.

Резистор в базе служит для ограничения протекающего тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.

При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.

Источник



Транзисторы: схема, принцип работы,​ чем отличаются биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

$ R = \frac<U - U_d data-lazy-src=

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Источник

Мощность тока с двумя транзисторами

Биполярные транзисторы

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Аналогия транзистора с переключателем

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

Включение транзистора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:

где V1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Таблица

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.

Типичное применение транзисторного ключа

1. Управление реле

Управление реле

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Включение транзистора

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Включение транзистора

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

Читайте также:  Что такое электрический ток чем характеризуется

beginner88-15.jpg

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.

Шпакунов А. Опубликована: 2012 г. 0 1
Вознаградить Я собрал 0 0

Источник



1.3. Биполярные транзисторы

Биполярный транзистор – это полупроводниковый прибор с дву­мя взаимодействующими р-n-переходами и с тремя выводами (рис. 1.15). В зависимости от чередования легированных областей различают транзисторы n-p-n-типа (рис. 1.15, а) и р-n-р-типа (рис, 1.15, б).

На рис. 1.15, в, г даны условные обозначения транзисторов п-р-п- и р-n-р-типов, соответственно. Выводы транзисторов обозначаются: Э – эмиттер, Б – база, К – коллектор.

Эмиттерная и коллекторная области отличаются тем, что в эмиттерной об­ласти концентрация примесей много больше, чем в коллекторной об­ласти. Переход, возникающий между эмиттером и базой, называется эмиттерным переходом, а переход, возникающий между коллектором и базой – коллекторным.

На рис. 1.16 приведена схема включения транзистора с подключен­ными источниками постоянного напряжения и коллекторным рези­стором. В этой схеме с корпусом соединен вывод базы транзистора. Поэтому эту схему называют схемой включения транзистора с общей базой (ОБ).

Различают четыре режима работы биполярного транзистора:

1) активный режим– открыт эмиттерный переход и закрыт коллекторный переход (рис. 1.16);

2) режим отсечки– оба р-n-перехода закрыты, и существенного тока через транзистор нет.

Для получения этого режима необходимо в схеме (см. рис. 1.16) изменить полярность источника ЕЭ на противоположную;

1) режим насыщения– два р-n-перехода транзистора открыты и через них протекают прямые токи. Для получения этого ре­жима необходимо в схеме (см. рис. 1.16) изменить полярность источника ЕК на противопо­ложную;

2) инверсный режим – открыт коллекторный переход и за­крыт эмиттерный переход. Для получения этого режима не­обходимо в схеме (см. рис. 1.16) изменить на противоположные полярности источников ЕК и ЕЭ.

Для усиления и преобразования сигналов в основном используется активный режим работы. Работа биполярного транзистора в активном режиме основана на явлении диффузии, а также на эффекте дрейфа носителей заряда в электрическом поле.

Работа транзи­стора в активном режиме

Рассмотрим работу транзи­стора в активном режиме на примере транзистора р-n-р-типа (рис. 1.16). В этом режиме эмиттерный переход транзистора открыт. Откры­вающее напряжение равно ЕЭ = 0,4…0,7 В.

Через открытый эмиттерный переход течет ток iЭ (iЭ = 0,1…10 мА для маломощного транзистора). Как правило, в эмиттерной области транзистора кон­центрация акцепторных примесей во много раз больше концентрации донорных примесей в базовой n-области транзистора. Поэтому кон­центрация дырок в области эмиттера много больше концентрации электронов в области базы, и практически весь ток эмиттера – это дырочный ток.

В одиночном p-n-переходе при диффузии дырок в п-область происходит полная рекомбинация инжектированных дырок с электронами п-области. В эмиттерном переходе транзистора происходит такой же процесс. Благодаря этому процессу возникает ток базы iБ (см. рис. 1.16). Однако в транзисторе происходят более сложные процессы.

Главной особенностью конструкции транзистора является относи­тельно тонкая базовая область. Ширина базы (W) в транзисторе много меньше длины свободного пробега дырок (L). У современных кремниевых транзисторов W » 1 мкм, а диффузионная длина L = 5…10 мкм. Следовательно, подавляющее большинство дырок достигают коллекторного перехода, не успев рекомбинировать с элек­тронами базы. Попадая в обратно смещенный коллекторный переход, дырки дрейфуют (и ускоряются) в имеющемся поле перехода.

Пройдя коллекторный переход, дырки рекомбинируют с электронами, подтекающими к коллектору от источника питания (ЕК). Отметим, что этот дырочный ток во много раз превышает собственный обратный ток закрытого коллекторного перехода и практически полностью определяет ток коллектора (iК) транзистора.

Из анализа активного режима (рис. 1.16) следует уравнение для токов транзистора:

В этом уравнении ток базы много меньше тока эмиттера и тока коллектора, а
ток коллектора практически равен току эмиттера транзистора.

Соотношения между токами в транзисторе характеризуются двумя параметрами:

коэффициентом передачи тока эмиттера

и коэффициентом передачи тока базы

Используя формулу (1.2), полу­чим формулу взаимосвязи коэффициентов передачи:

Значения коэффициентов α и β зависят от конструкции транзисто­ра. Для большинства маломощных транзисторов, используемых в уст­ройствах связи и в компьютерах, коэффициент b = 20…200, а коэф­фициент a = 0,95…0,995.

Усилительные свойства транзистора

Рассмотрим усилительные свойства транзистора. Пусть на входе транзистора имеется напряжение ЕЭ = 0,5 В. И пусть это напряжение создает ток iЭ = 5 мА. Мощность, расходуемая на управление транзистором, равна:

РВХ = ЕЭ iЭ = 0,5 × 5 ×10 -3 = 2,5 мВт.

Пусть сопротивление полезной нагрузки в коллекторной цепи транзистора (рис. 1.17) равно RК = 1 кОм. По нагрузочному резистору протекает коллекторный ток, примерно равный эмиттерному току транзистора: iK » iЭ. Выходная мощность, выделяющаяся на нагрузке, равна:

Следовательно, в схеме (см. рис. 1.17) обеспечивается десятикратное усиление по мощности. Заметим, что для обеспечения такого усиления требуется, чтобы на коллекторный переход было подано большое запирающее напряжение:

где UK = iKRK – падение напряжения на нагрузочном сопротивлении в цепи коллектора.

Увеличенная энергия выходного сигнала обеспечивается источником питания в коллекторной цепи.

Рассмотрим другие режимы работы транзистора:

· в режиме насыщения возникает прямой ток коллекторного перехода. Его направление противоположно направлению диффузионного тока дырок. Результирующий ток коллектора резко уменьшается, и резко ухудшаются усилительные свойства транзистора;

· редко используется транзи­стор в инверсном режиме, так как инжекционные свойства коллектора много хуже инжекционных свойств эмиттера;

Читайте также:  Я9 44 преобразователь напряжение ток инструкция

· в режиме отсечки все токи через транзистор практически равны нулю – оба перехода тран­зистора закрыты, и усилительные свойства транзистора не проявляют­ся.

Кроме рассмотренной схемы включения транзистора с общей базой используются две другие схемы:

1) при соединении с корпусом эмиттера транзистора получим схему с общим эмиттером (ОЭ) (рис. 1.17). Схема ОЭ наиболее часто встречается на практике;

2) при соединении с корпусом коллектора транзистора получим схему с общим коллектором (ОК). В этих схемах управляющее напряжение подается на базовый вывод транзистора.

Зависимости токов через выводы транзистора от приложенных к транзистору напряжений называют вольт-амперными характеристи­ками (ВАХ) транзистора.

Для схемы с общим эмиттером (рис. 1.17) ВАХ транзистора имеют вид (рис. 1.18, 1.19). Аналогичные графики можно получить для схемы с общей базой. Кривые (см. рис. 1.18) называются входными характеристиками транзистора, так как они показывают зависимость входного тока от управляющего входного напряжения, подаваемого между базой и эмиттером транзистора. Входные характеристики транзистора близки к характеристикам р-n-перехода.

Зависимость входных характеристик от напряжения на коллекторе объясняется увеличением ширины кол­лекторного перехода и, следовательно, уменьшением толщины базы при увеличении обратного напряжения на коллекторе транзистора (эффект Эрли).

Кривые (см. рис. 1.19) называются выходными характеристиками транзи­стора. Их используют для определения коллекторного тока транзистора. Увеличению коллекторного тока соответствует увеличе­ние управляющего напряжения на базе транзистора:

При uКЭ £ UНАС (см. рис. 1.19) напряжение на коллекторе транзистора ста­новится меньше напряжения на базе. В этом случае открывается кол­лекторный переход транзистора, и возникает режим насыщен
ия, при котором ток коллектора резко уменьшается.

При большом напряжении на коллекторе ток коллектора начинает возрастать, так как возникает процесс лавинного (или теплового) про­боя коллекторного перехода транзистора.

Из анализа ВАХ транзистора следует, что транзистор, как и диод, относится к нелинейным элементам. Однако в активном режиме при uКЭ > UНАС ток коллектора транзистора изменяется примерно прямо пропорционально приращениям входного управляющего напряжения на базе транзистора, т.е. выходная цепь транзистора близка по свойствам к идеальному управляемому источнику тока. Ток коллектора в активном режиме практически не зависит от нагрузки, подключаемой к коллектору транзистора.

Источник

Tранзисторы (Всё что Вы хотели знать, но боялись спросить)

Полупроводниковые транзисторы делятся на биполярные и полевые. Первые гораздо более распространены в электронике. Поэтому начнем разбираться с работой биполярного транзистора именно с него.

Работа транзистора — устройство и обозначение.

Условно биполярный транзистор можно нарисовать в виде пластины полупроводника с меняющимися областями разной проводимости, состоящие из двух p-n переходов. Причем крайние области пластины обладают проводимостью одного типа, а средняя область противоположного типа, каждая из областей имеет свой персональный вывод. В зависимости от чередования этих областей транзисторы бывают p-n-p и n-p-n проводимости, соответственно.

А если взять и прикрыть одну любую часть транзистора, то у нас получится полупроводник с одним p-n переходом или диод. Отсюда напрашивается вывод, что биполярный транзистор условно можно представить в виде двух полупроводников с одной общей зоной, соединенных встречно друг к другу.

Часть транзистора, назначением которой является инжекция носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным, а та часть элемента, назначение которой заключается в выводе или экстракции носителей заряда из базы, получила название коллектор, и p-n переход коллекторный. Общую зону назвали базой. Различие в обозначениях разных структур состоит лишь в направлении стрелки эмиттера: в p-n-p она направлена в сторону базы, а в n-p-n наоборот, от базы.

Работа транзистора — коротко об технологии изготовления.

В начальный период развития полупроводниковой электроники их изготавливали только из германия по технологии вплавления примесей, поэтому их назвали сплавными. Например, в основе кристалл германия и в него вплавляю маленькие кусочки индия. Атомы индия проникаю в тело германиевого кристалла, создают в нем две области – коллектор и эмиттер. Между ними остается очень тонкая в несколько микрон прослойка полупроводника противоположного типа — база. А чтобы спрятать кристалл от света его прячут в корпус. На рисунке показано, что к металлическому диску приварен кристаллодержатель, являющийся выводом базы, а снизу диска имеется ее наружный проволочный вывод.

Внутренние выводы коллектора и эмиттера приварены к проводникам внешних электродов. С развитием электроники приступили к обработке кристаллов кремния, и изобрели кремниевые приборы, практически полностью отправившие на пенсию германиевые транзисторы. Они способны работать с более высокими температурах, в них ниже значение обратного тока и более высокое напряжение пробоя. Основным методом изготовления является планарная технологи. У таких транзисторов p-n переходы располагаются в одной плоскости. Принцип метода основывается на диффузии или вплавлении в пластину кремния примеси, которая может быть в газообразной, жидкой или твердой составляющей. При нагрева до строго фиксированной температуры осуществляется диффузия примесных элементов в кремний.

В данном случае один из шариков создает тонкую базовую область, а другой эмиттерную. В результате в кремнии образуются два p-n перехода. По этой технологии производят в заводских условиях наиболее распространенные типы кремниевых транзисторов. Кроме того для изготовления транзисторных структур широко применяются комбинированные методы: сплавление и диффузия или различные варианты диффузии, например, двусторонняя или двойная односторонняя.

Работа транзистора в режиме диода при прямом подключении.

Проведем практический эксперимент, для этого нам потребуется любой транзистор и лампочка накаливания из старого фонарика и чуть-чуть монтажного провода для того, чтоб мы могли собрать эту схему.

Работа транзистора практический опыт для начинающих.

Лампочка светится потому, что на коллекторный переход поступает прямое напряжение смещения, которое отпирает коллекторный переход и через него течет коллекторный ток Iк. Номинал его зависит от сопротивления нити лампы и внутреннего сопротивления батарейки или блока питания. А теперь представим эту схему в структурном виде:

Так как в области N основными носителями заряда являются электроны, они проходя потенциальный барьер p-n переход, попадают в дырочную область p-типа и становятся неосновными носителями заряда, где начинают поглощаться основными носителями дырками. Таким же и дырки из коллектора, стремятся попасть в область базы и поглощаются основными носителями заряда электронами. Так как база к минусу источника питания, то на нее будет поступать множество электронов, компенсируя потери из области базы. А коллектора, соединенный с плюсом через нить лампы, способен принять такое же число, поэтому будет восстанавливаться концентрация дырок. Проводимость p-n перехода существенно возрастет и через коллекторный переход начнет идти ток коллектора Iк. И чем он будет выше, тем сильнее будет гореть лампочка накаливания. Аналогичные процесс протекают и в цепь эмиттерного перехода. На рисунке показан вариант подключения схемы для второго опыта.

Работа транзистора при обратном включении p-n перехода Проведем очередной практический опыт и подключим базу транзистора к плюсу БП. Лампочка не загорается, так как p-n переход транзистора мы подсоединили в обратном направлении и сопротивление перехода резко возросло и через него следует лишь очень маленький обратный ток коллектора Iкбо не способный зажечь нить лампочки.

Читайте также:  Измерение величины проходящего тока

Работа транзистора в режиме переключения Осуществим, еще один интересный эксперимент подключим лампочку в соответствии с рисунком. Лампочка не светится, давайте разберемся почему.

Если приложено напряжение к эмиттеру и коллектору, то при любой полярности источника питания один из переходов будет в прямом, а другой в обратном включении и поэтому ток течь не будет и лампочка не горит.

Из структурной схемы очень хорошо видно, что эмиттерный переход смещен в прямом направлении и открыт и ожидает прием свободных электронов. Коллекторный переход, наоборот, подсоединен в обратном направлении и мешает попадать электронам в базу. Между коллектором и базой образуется потенциальный барьер, который будет оказывать току большое сопротивление и лампа гореть не будет. Добавим к нашей схеме всего одну перемычку, которой соединим эмиттер и базу, но лампочка все равно не горит.

Тут, в принципе, все понятно при замыкании базы и эмиттера перемычкой коллекторный переход превращается в диод, на который поступает обратное напряжение смещение. Установим вместо перемычки сопротивление Rб номиналом 200 – 300 Ом, и еще один источник питания на 1,5 вольта. Минус его соединим через Rб с базой, а плюс с эмиттером. И свершилось чудо, лампочка засветилась.

Лампа засветилась потому, что мы подсоединили дополнительный источник питания между базой и эмиттером, и тем самым подали на эмиттерный переход прямое напряжение, что привело к его открытию и через него потек прямой ток, который отпирает коллекторный переход транзистора. Транзистор открывается и через него течет коллекторный ток Iк, во много раз превышающий ток эмиттер-база. И поэтому этому току лампочка засветилась. Если же мы изменим полярность дополнительного источника питания и на базу подадим плюс, то эмиттерный переход закроется, а за ним и коллекторный. Через транзистор потечет обратный Iкбо и лампочка перестанет гореть. Основная функция резистора Rб ограничивать ток в базовой цепи. Если на базу поступит все 1,5 вольта, то через переход пойдет слишком большой ток, в результате которого произойдет тепловой пробой перехода и транзистор может сгореть. Для германиевых транзисторов отпирающее напряжение должно быть около 0,2 вольта, а для кремниевых 0,7 вольта. Обратимся к структурной схеме: При подаче дополнительного напряжения на базу открывается эмиттерный переход и свободные дырки из эмиттера взаимопоглощаются с электронами базы, создавая прямой базовый ток Iб.

Но не все дырки, попадая в базу, рекомбинируются с электронами. Так как, область базы достаточно узкая, поэтому лишь незначительная часть дырок поглощается электронами базы. Основной объем дырок эмиттера проскакивает базу и попадает под более высокий уровень отрицательного напряжения в коллекторе, и вместе с дырками коллектора текут к его отрицательному выводу, где и взаимопоглощается электронами от основного источника питания GB. Сопротивление коллекторной цепи эмиттер-база-коллектор резко падает и в ней начинает течь прямой ток коллектора Iк во много раз превышающий ток базы Iб цепи эмиттер-база. Чем выше уровень отпирающего напряжения на базе, тем выше количество дырок попадает из эмиттера в базу, тем выше значение тока в коллекторе. И, наоборот, чем ниже отпирающее напряжение на базе, тем ниже ток в коллекторной цепи. В этих экспериментах начинающего радиолюбителя по принципам работы транзистора, он находится в одном из двух состояний: открыт или закрыт. Переключение его из одного состояния в другое осуществляется под действием отпирающего напряжения на базе Uб. Этот режим работы транзистора в электроники получил название ключевым. Он используют в приборах и устройствах автоматики.

Кодовая и цветовая маркировка транзисторов

Отечественные транзисторы с корпусами малых размеров маркируются цветовой или кодовой маркировкой и лишь в редких случаях марка транзистора наносится полностью, как есть. При ремонте бытовой аппаратуры можно столкнуться с цветовой или кодовой маркировкой и для замены транзистора необходимо определить марку транзистора, сделать это можно и с помощью программы кодовой и цветовой маркировки транзисторов, сейчас мы рассмотрим как это сделать с помощью справочника.
Кодово-цветовая маркировка транзисторов в корпусе КТ-27 (ТО-126)

Далее смотрим в таблицу ниже и находим строку которая соответствует кодово-цветовой маркеровке вашего транзистора.

Таблица определения марки транзистора по кодо-цветовой маркировке.

Когда нашли значок который изображен на корпусе определяемся с маркой транзистора, его марка должна быть одной из этих — КТ814(А-Г), КТ815(А-Г),КТ816(А-Г), КТ817(А-Г), КТ638(А,Б), КТ9115(А,Б), КУ112, КТ940(А-В), КТ646А, КТ646Б, КТ972А, КТ972Б, КТ973А, КТ973Б. Обратите внимание, что среди марок транзисторов есть и тиристор КУ112.

Таблица определения года выпуска транзистора по кодовой маркировке.

Таблица определения месяца выпуска транзистора по кодовой маркировке.

Цветовая маркировка транзисторов в корпусе КТ-26

Цветовой маркировкой, как показано на рисунке ниже, обазначаются транзисторы КТ326, КТ337, КТ345, КТ349, КТ350, КТ351, КТ352, КТ363, КТ645, КТ3107. Кроме марки данных транзисторов на корпусе указываются год и месяц выпуска транзистора.

Ниже приведена цветовая маркировка транзисторов КТ203, КТ209, КТ313, КТ336, КТ339, КТ342, КТ502, КТ503, КТ3102. Маркируются транзисторы данных марок всего двумя точками. В данном обозначении месяц и год выпуска отсутствуют.

Нестандартная цветовая маркировка транзисторов.

Иногда транзисторы выпускались с нестандартной цветовой маркировкой, некоторые примеры приведены ниже:

Кодовая маркировка транзисторов в корпусе КТ-26.

Кодовая маркировка применяется к транзисторам в корпусе КТ-26 следующих марок — КТ203, КТ208, КТ209, КТ313, КТ326, КТ339, КТ342, КТ502, КТ503, КТ3102, КТ3107, КТ3157, КТ3166, КТ6127, КТ680, КТ681, КТ698, КП103. Как видите марки транзисторов с кодовой маркировкой включают все марки с цветовой, но не наоборот. Связано это с тем, что кодовая появилась позже и к тому времени некоторые транзисторы уже не выпускались. Маркировка на транзисторы может наносится как с годом и месяцем выпуска так и без них.

Некоторые примеры кодовой маркировки.

Нестандартная кодовая кодировка транзисторов.

Маркировка SMD транзистора BC847A.

Возможны ситуации, когда в один и тот же корпус фирмы-производители под одной и той же маркировкой помещают разные приборы, например, фирма PHILIPS помещает в корпус типа SOT323 NPN-транзистор типа BC818W и маркирует его кодом 6H, а фирма MOTOROLA в такой же корпус с маркировкой 6H помещает PNP-транзистор типа MUN5131T1. Такая же ситуация встречается и внутри одной фирмы. Например, в корпусе типа SOT23 у фирмы SIEMENS под маркировкой 1А выпускаются транзисторы BC846A и SMBT3904, обладающие разными параметрами.
Различить такие приборы установленные на плате можно только по окружающим их компонентам и соответственно – схеме включения.

Программа для определения транзистора по цветовой и символьной маркировке. https://yadi.sk/d/SiubFm9N34VMsY

Больше не уместилось. 🙁

ЗЫ: Взял где взял, обобщил и добавил немного.
Простите за качество некоторых картинок (чем богаты).

Источник