Меню

Напряжение между обкладками не менялось

Подробнее о процессах зарядки и разрядки конденсатора

Для школьников.

Основной характеристикой конденсатора является его электрическая ёмкость С .

Под ёмкостью конденсатора понимается его способность накопить на своих обкладках и удержать на них электрический заряд.

Чем больший электрический заряд соберёт на себе конденсатор, тем больший заряд при разряде он отдаст во внешнюю электрическую цепь.

Ёмкость плоского конденсатора тем больше, чем больше площадь его пластин, чем меньше расстояние между ними и чем больше диэлектрическая проницаемость диэлектрика между его обкладками (объяснение дано в Занятии 53 ):

Подробнее о процессах зарядки и разрядки конденсатора

На практике конденсатор заряжают, присоединив его обкладки к полюсам источника постоянного напряжения.

Как происходит процесс зарядки конденсатора?

До зарядки каждая обкладка конденсатора имела одинаково е количество положительных и отрицательных зарядов, то есть не была заряжена.

Чтобы зарядить конденсатор надо, чтобы какое-то количество свободных электронов перешло с одной обкладки на другую. Поэтому обкладки и получают одинаковые по модулю, но противоположные по знаку заряды.

Эту роль выполняет источник постоянного напряжения.

Обкладка конденсатора, соединённая с положительным полюсом источника напряжения, получает заряд

Подробнее о процессах зарядки и разрядки конденсатора

а обкладка соединённая с отрицательным полюсом источника получает такой же по модулю отрицательный заряд

Подробнее о процессах зарядки и разрядки конденсатора

Источни к перемещает свободные электроны по внешней цепи (по проводам).

Это направленное движение электронов в проводах от «минуса» источника к «плюсу» есть электрический ток .

Этот ток называется «зарядным током» (заряжает конденсатор). Продолжительность зарядки конденсатора зависит от его ёмкости и внутреннего сопротивления источника напряжения.

Зарядный ток протекает (конденсатор заряжается) до тех пор , пока напряжение на конденсаторе (разность потенциалов между его обкладками) не станет равной ЭДС (электродвижущей силе) источника.

С увеличением напряжения на конденсаторе зарядный ток уменьшается.

При полной зарядке конденсатора (при равенстве напряжения и ЭДС источника) зарядный ток становится равным нулю, и дальше напряжение на конденсаторе остаётся постоянным.

Величина заряда на обкладке равна произведению ёмкости конденсатора на напряжение между его обкладками:

Подробнее о процессах зарядки и разрядки конденсатора

Если заряженный конденсатор отключить от источника и присоединить его к внешней цепи, то конденсатор станет разряжаться .

Электроны по проводам , отталкиваясь от отрицательно заряженной обкладки, станут двигаться к положительно заряженной обкладке конденсатора — по внешней цепи потечёт » разрядный ток».

Если во внешней цепи есть электрическая лампочка, то на короткое время будет наблюдаться вспышка света, что указывает на разрядный ток.

Процесс разрядки конденсатора идёт до тех пор, пока потенциалы обкладок не сравняются (пока напряжение между обкладками не станет равным нулю).

Про работу источника постоянного напряжения (или тока) будет идти речь далее в теме «Постоянный ток».

Читайте также:  Что такое внутреннее напряжение физика

Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Сообщите друзьям о существовании этого канала.

Предыдущая запись : Нахождение заряда и напряжения на каждом конденсаторе при их последовательном соединении.

Следующая запись: Последовательное и параллельное соединения конденсаторов.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Источник



Напряжение между обкладками не менялось

Задание 15. В колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону Uc =U0∙cos(ωt), где U0 = 20 В, с^-1. Определите период колебаний силы тока в контуре.

Частота колебаний тока в колебательном контуре равна частоте колебаний напряжения. Учитывая, что

а период колебаний

что составляет 0,4 мкс.

Ответ: 0,4.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 5
  • Вариант 5. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9 (совпадает с ЕГЭ 2019 вариант 1)
  • Вариант 1. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 10 (совпадает с ЕГЭ 2019 вариант 2)
  • Вариант 2. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 11 (совпадает с ЕГЭ 2019 вариант 3)
  • Вариант 3. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 12 (совпадает с ЕГЭ 2019 вариант 4)
  • Вариант 4. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 13 (совпадает с ЕГЭ 2019 вариант 5)
  • Вариант 5. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 14 (совпадает с ЕГЭ 2019 вариант 6)
  • Вариант 6. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 15 (совпадает с ЕГЭ 2019 вариант 7)
  • Вариант 7. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 16 (совпадает с ЕГЭ 2019 вариант 8)
  • Вариант 8. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 17 (совпадает с ЕГЭ 2019 вариант 9)
  • Вариант 9. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 18 (совпадает с ЕГЭ 2019 вариант 10)
  • Вариант 10. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 19 (совпадает с ЕГЭ 2018 вариант 1)
  • Вариант 1. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 20 (совпадает с ЕГЭ 2018 вариант 2)
  • Вариант 2. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 21 (совпадает с ЕГЭ 2018 вариант 3)
  • Вариант 3. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 22 (совпадает с ЕГЭ 2018 вариант 4)
  • Вариант 4. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 23 (совпадает с ЕГЭ 2018 вариант 5)
  • Вариант 5. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 24 (совпадает с ЕГЭ 2018 вариант 6)
  • Вариант 6. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 25 (совпадает с ЕГЭ 2018 вариант 7)
  • Вариант 7. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 26 (совпадает с ЕГЭ 2018 вариант 8)
  • Вариант 8. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 27 (совпадает с ЕГЭ 2018 вариант 9)
  • Вариант 9. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 28 (совпадает с ЕГЭ 2018 вариант 10)
  • Вариант 10. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 29 (совпадает с ЕГЭ 2017 вариант 11)
  • Вариант 11. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 30 (совпадает с ЕГЭ 2017 вариант 12)
  • Вариант 12. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
Читайте также:  Регулятор напряжения генератора приора с кондиционером как проверить

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Напряжение между обкладками не менялось

Напряжение между обкладками конденсатора в колебательном контуре меняется с течением времени согласно графику на рисунке. Какое преобразование энергии происходит в контуре в промежутке от 3 умножить на <<10 data-lazy-src=