Меню

Напряжение тока в производстве

Ток и напряжение. Виды и правила. Работа и характеристики

Ток и напряжение являются количественными параметрами, применяемыми в электрических схемах. Чаще всего эти величины меняются с течением времени, иначе не было бы смысла в действии электрической схемы.

Напряжение

Условно напряжение обозначается буквой «U». Работа, затраченная на перемещение единицы заряда из точки, имеющей малый потенциал в точку с большим потенциалом, является напряжением между этими двумя точками. Другими словами, это энергия, освобождаемая после перехода единицы заряда от высокого потенциала к малому.

Напряжение еще могут называть разностью потенциалов, а также электродвижущей силой. Этот параметр измеряется в вольтах. Чтобы переместить 1 кулон заряда между двумя точками, которые имеют напряжение 1 вольт, нужно выполнить работу в 1 джоуль. Кулонами измеряются электрические заряды. 1 кулон равен заряду 6х10 18 электронов.

Напряжение разделяется на несколько видов, в зависимости от видов тока:

  • Постоянное напряжение. Оно присутствует в электростатических цепях и цепях постоянного тока.
  • Переменное напряжение. Этот вид напряжения имеется в цепях с синусоидальными и переменными токами. В случае синусоидального тока рассматриваются такие характеристики напряжения, как:
    амплитуда колебаний напряжения – это максимальное его отклонение от оси абсцисс;
    — мгновенное напряжение, которое выражается в определенный момент времени;
    — действующее напряжение, определяется по выполняемой активной работе 1-го полупериода;
    — средневыпрямленное напряжение, определяемое по модулю величины выпрямленного напряжения за один гармонический период.

Tok i napriazhenie grafiki (U)

При передаче электроэнергии по воздушным линиям устройство опор и их размеры зависят от величины применяемого напряжения. Величина напряжения между фазами называется линейным напряжением, а напряжение между землей и каждой из фаз – фазным напряжением. Такое правило применимо для всех типов воздушных линий. В России в электрических бытовых сетях, стандартным является трехфазное напряжение с линейным напряжением 380 вольт, и фазным значением напряжения 220 вольт.

Электрический ток

Ток в электрической цепи является скоростью движения электронов в определенной точке, измеряется в амперах, и обозначается на схемах буквой «I». Также используются и производные единицы ампера с соответствующими приставками милли-, микро-, нано и т.д. Ток размером в 1 ампер образуется передвижением единицы заряда в 1 кулон за 1 секунду.

Условно считается, что ток в электрической цепи течет по направлению от положительного потенциала к отрицательному. Однако, из курса физики известно, что электрон движется в противоположном направлении.

Tok i napriazhenie (I)

Необходимо знать, что напряжение измеряется между 2-мя точками на схеме, а ток течет через одну конкретную точку схемы, либо через ее элемент. Поэтому, если кто-то употребляет выражение «напряжение в сопротивлении», то это неверно и неграмотно. Но часто идет речь о напряжении в определенной точке схемы. При этом имеется ввиду напряжение между землей и этой точкой.

Напряжение образуется от воздействия на электрические заряды в генераторах, батареях, солнечных элементах и других устройствах. Ток возникает путем приложения напряжения к двум точкам на схеме.

Tok i napriazhenie grafiki (I) 1

Чтобы понять, что такое ток и напряжение, правильнее будет воспользоваться осциллографом. На нем можно увидеть ток и напряжение, которые меняют свои значения во времени. На практике элементы электрической цепи соединены проводниками. В определенных точках элементы цепи имеют свое значение напряжения.

Ток и напряжение подчиняются правилам:
  • Сумма токов, входящих в точку, равняется сумме токов, выходящих из точки (правило сохранения заряда). Такое правило является законом Кирхгофа для тока. Точка входа и выхода тока в этом случае называется узлом. Следствием из этого закона является следующее утверждение: в последовательной электрической цепи группы элементов величина тока для всех точек одинакова.
  • В параллельной схеме элементов напряжение на всех элементах одинаково. Иначе говоря, сумма падений напряжений в замкнутом контуре равна нулю. Этот закон Кирхгофа применяется для напряжений.
  • Работа, выполненная в единицу времени схемой (мощность), выражается следующим образом: Р = U*I. Мощность измеряется в ваттах. Работа величиной 1 джоуль, выполненная за 1 секунду, равна 1 ватту. Мощность распространяется в виде теплоты, расходуется на совершение механической работы (в электродвигателях), преобразуется в излучение различного вида, накапливается в емкостях или батареях. При проектировании сложных электрических систем, одной из проблем является тепловая нагрузка системы.
Характеристика электрического тока

Обязательным условием существования тока в электрической цепи является замкнутый контур. Если контур цепи разрывается, то ток прекращается.

По такому принципу действуют все защиты и выключатели в электротехнике. Они разрывают электрическую цепь подвижными механическими контактами, и этим прекращают течение тока, выключая устройство.

В энергетической промышленности электрический ток возникает внутри проводников тока, которые выполнены в виде шин, кабелей, проводов и других частей, проводящих ток.

Также существуют другие способы создания внутреннего тока в:
  • Жидкостях и газах за счет передвижения заряженных ионов.
  • Вакууме, газе и воздухе с помощью термоэлектронной эмиссии.
  • Полупроводниках, вследствие движения носителей заряда.
Условия возникновения электрического тока:
  • Нагревание проводников (не сверхпроводников).
  • Приложение к носителям заряда разности потенциалов.
  • Химическая реакция с выделением новых веществ.
  • Воздействие магнитного поля на проводник.
Формы сигнала тока:
  • Прямая линия.
  • Переменная синусоида гармоники.
  • Меандром, похожий на синусоиду, но имеющий острые углы (иногда углы могут сглаживаться).
  • Пульсирующая форма одного направления, с амплитудой, колеблющейся от нуля до наибольшей величины по определенному закону.

Vidy toka na grafike

Виды работы электрического тока:
  • Световое излучение, создающееся приборами освещения.
  • Создание тепла с помощью нагревательных элементов.
  • Механическая работа (вращение электродвигателей, действие других электрических устройств).
  • Создание электромагнитного излучения.
Отрицательные явления, вызываемые электрическим током:
  • Перегрев контактов и токоведущих частей.
  • Возникновение вихревых токов в сердечниках электрических устройств.
  • Электромагнитные излучения во внешнюю среду.

Создатели электрических устройств и различных схем при проектировании должны учитывать вышеперечисленные свойства электрического тока в своих разработках. Например, вредное влияние вихревых токов в электродвигателях, трансформаторах и генераторах снижается путем шихтовки сердечников, применяемых для пропускания магнитных потоков. Шихтовка сердечника – это его изготовление не из цельного куска металла, а из набора отдельных тонких пластин специальной электротехнической стали.

Но, с другой стороны, вихревые токи используют для работы микроволновых печей, духовок, действующих по принципу магнитной индукции. Поэтому, можно сказать, что вихревые токи оказывают не только вред, но и пользу.

Переменный ток с сигналом в форме синусоиды может различаться частотой колебаний за единицу времени. В нашей стране промышленная частота тока электрических устройств стандартная, и равна 50 герцам. В некоторых странах используется частота тока 60 герц.

Для различных целей в электротехнике и радиотехнике используют другие значения частоты:
  • Низкочастотные сигналы с меньшей величиной частоты тока.
  • Высокочастотные сигналы, которые намного выше частоты тока промышленного использования.
Читайте также:  Какие правила освобождения от действия электрического тока

Считается, что электрический ток возникает при движении электронов внутри проводника, поэтому он называется током проводимости. Но существует и другой вид электрического тока, который получил название конвекционного. Он возникает при движении заряженных макротел, например, капель дождя.

Электрический ток в металлах

Движение электронов при воздействии на них постоянной силы сравнивают с парашютистом, который снижается на землю. В этих двух случаях происходит равномерное движение. На парашютиста действует сила тяжести, а противостоит ей сила сопротивления воздуха. На движение электронов действует сила электрического поля, а сопротивляются этому движению ионы решеток кристаллов. Средняя скорость электронов достигает постоянного значения, так же как и скорость парашютиста.

В металлическом проводнике скорость движения одного электрона равна 0,1 мм в секунду, а скорость электрического тока около 300 тысяч км в секунду. Это объясняется тем, что электрический ток течет только там, где к заряженным частицам приложено напряжение. Поэтому достигается большая скорость протекания тока.

При перемещении электронов в кристаллической решетке существует следующая закономерность. Электроны сталкиваются не со всеми встречными ионами, а только с каждым десятым из них. Это объясняется законами квантовой механики, которые можно упрощенно объяснить следующим образом.

Движению электронов мешают большие ионы, которые оказывают сопротивление. Это особенно заметно при нагревании металлов, когда тяжелые ионы «качаются», увеличиваются в размерах и уменьшают электропроводность решеток кристаллов проводника. Поэтому при нагревании металлов всегда увеличивается их сопротивление. При снижении температуры повышается электрическая проводимость. При снижении температуры металла до абсолютного нуля можно добиться эффекта сверхпроводимости.

Источник

Производство переменного тока

Как же переменный ток производится?

Начнем с того, что переменное магнитное поле способно создавать электрическое поле. То есть, если взять катушку с проводником (например, катушку из медного провода) и рядом с ней «махать» магнитом, то будет создаваться электрическое поле и ток побежит по этому проводнику. По этому принципу и работает генератор переменного тока. То есть большой магнит вращается рядом с тремя большими катушками.

В простой и понятной форме генератор можно описать так: представим окружность, внутри которой вращается огромный магнит (с двумя полюсами), вокруг магнита к этой окружности присоединены 3 катушки расположенные на одинаковом расстоянии друг от друга и делящие эту окружность на три равные секции. То есть, если из центра этой окружности (центра вращения магнита) провести радиусы к этим катушкам, то окружность поделится на три равные части (эмблема Мерседеса) и угол между этими радиусами будет 120 градусов.

Таким образом, магнит вращается, а переменное магнитное поле порождает электрическое поле, то есть ток. Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рисунке, изображенном ниже, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

Ток будет бежать то в одну сторону, то в другую и постоянно менять свое значение, то достигая максимума, то падая до нуля. Это будет зависеть от расположения полюсов магнита относительно катушки во время его вращения. Графически изменение напряжения тока можно описать в виде синусоиды.

В России магнит вращается со скоростью 50 оборотов в секунду. Каждый оборот соответствует одному периоду. Один период это тоже что и полное колебание (описывал чуть выше). Но так как катушки расположены на расстоянии друг от друга на угол 120 градусов (одна треть периода), то и колебания будут происходить в этих катушках с запаздыванием друг относительно друга на одну треть периода.

Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током.

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока.

В таком случае, для передачи электричества от трехфазного генератора нам необходимо 6 проводов. По 2 от каждой катушки. Однако, можно так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Основной из этих способов, называется соединением звездой.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1′, 2′, 3′ — концами соответствующих фаз.

Соединение звездой заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью, и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами, идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом, идущим от нулевой точки генератора.В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю. Такая система проводки называется четырехпроводной.

Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями (это по сути напряжение которое создается в каждой конкретной катушке), а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными.

Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение Uл = √3Uф ≈ 1,73Uф

Таким образом, например, если фазное напряжение генератора Uф = 220 В, то при соединении обмоток генератора звездой линейное напряжение Uл — 380 В.

При применении трехфазного тока все приемники питаются от различных фаз, но соединены они все в общей точке (с общим нулевым проводом). Смотри картинку ниже.

Источник

Номинальное напряжение (электрической установки): определение, особенности, диапазоны

Определение.

Номинальное напряжение (электрической установки) (nominal voltage (of an electrical installation)) — это значение напряжения, которым обозначают и идентифицируют электрическую установку или часть электрической установки (определение на основе ГОСТ 30331.1-2013) [1]. Принято краткое обозначение — Un .

Примечание к определению: переходные напряжения, вызванные, например, коммутационными переключениями, и временные колебания напряжения из-за ненормальных условий, таких как повреждения в системе питания, не учитываются.

Харечко Ю.В. в своей книге [4] подытоживает:

« То есть каждая электроустановка, включая электроустановку здания, характеризуется одним или несколькими значениями номинального напряжения. Фактическое значение напряжения в электроустановке может отличаться от номинального напряжения в пределах допустимых отклонений. »

[4]

Особенности

О некоторых особенностях использования номинального напряжения писал в своей книге [2] Харечко Ю.В.

« Электроустановку здания, как правило, подключают к низковольтной распределительной электрической сети. Сама электроустановка здания представляет собой совокупность взаимосвязанного электрооборудования, выполняющего определенные функции. Поэтому посредством, в том числе, номинального напряжения выполняют согласование характеристик всего электрооборудования, применяемого и в распределительной электрической сети, и в электроустановке здания с целью обеспечения его нормального функционирования. »

[4]

Значения номинального напряжения для электроустановок зданий, а также для других низковольтных и высоковольтных электроустановок установлены стандартом ГОСТ 29322-2014 [2], который распространяется на:

  • на электрические системы переменного тока номинальным напряжением более 100 В и стандартной частотой 50 Гц или 60 Гц, используемые для передачи, распределения и потребления электроэнергии, и электрооборудование, применяемое в таких системах;
  • на тяговые системы переменного и постоянного тока;
  • на электрооборудование переменного тока с номинальным напряжением менее 120 В и частотой (как правило, но не только) 50 или 60 Гц, электрооборудование постоянного тока с номинальным напряжением менее 750 В. К такому оборудованию относятся батареи (из элементов или аккумуляторов), другие источники питания переменного или постоянного тока, электрическое оборудование (включая промышленное и коммуникационное) и бытовые электроприборы.
Читайте также:  Преобразователь тока ипт 1 200а питание 12 36в выход 4 20ма

Диапазоны значений

Стандарт ГОСТ 29322-2014 устанавливает значения стандартного напряжения, которые предназначены для применения в качестве [2]:

  • предпочтительных значений для номинального напряжения электрических систем питания;
  • эталонных значений для электрооборудования и проектируемых электрических систем.

В таблице 1 подраздела 3.1 «Системы и электрооборудование переменного тока с номинальным напряжением от 100 В до 1000 В включительно» стандарта ГОСТ 29322-2014 приведены номинальные напряжения систем переменного тока в диапазоне от 100 В до 1000 В, которыми следует руководствоваться при выборе номинального напряжения в распределительных электрических сетях и подключаемых к ним электроустановках зданий.

a) Значение 230/400 В является результатом эволюции систем 220/380 В и 240/415 В, которые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих пор продолжают применять.

b) Значение 400/690 В является результатом эволюции системы 380/660 В, которую завершили использовать в Европе и во многих других странах. Однако систему 380/660 В до сих пор продолжают применять.

c) Значение 200 или 220 В также используют в некоторых странах.

d) Значения 100/200 В также используют в некоторых странах в системах с частотой 50 или 60 Гц.

В стандарте ГОСТ 29322-2014 [2] указано, что таблицей 1 учтено наличие однофазных электрических цепей, представляющих собой ответвления от трехфазных четырехпроводных и однофазных трехпроводных электрических систем. Меньшие значения в первой и второй колонках таблицы 1 являются напряжениями между фазой и нейтралью 1 , большие значения – напряжениями между фазами 2 . Если указано одно значение, оно относится к трехфазным трехпроводным электрическим системам и устанавливает напряжение между фазами. Меньшее значение в третьей колонке таблицы 1 является напряжением между фазой и нейтралью, большее значение – напряжение между фазными проводниками 3 .

Стандартом ГОСТ 29322-2014 установлено, что при нормальных условиях оперирования напряжение питания 4 не должно отличаться от номинального напряжения системы больше чем на ±10%. В стандарте также указано, что диапазон используемых напряжений 5 зависит от изменений напряжения на зажимах питания и падения напряжения, которое может быть в потребительской электроустановке 6 .

Например, номинальное напряжение 230/400 В обозначает следующее: 230 В – напряжение между фазой и нейтралью, 400 В – напряжение между фазами. Напряжение в точке подключения однофазной электроустановки здания к низковольтной электрической сети должно быть равным 230 В ± 10 %, трёхфазной электроустановки здания – 400 В ± 10 %.

Напряжения, превышающие 230/400 В, предназначены для применения в электроустановках промышленных и больших торговых предприятий, поскольку они характеризуются большими нагрузками и протяженными электрическими цепями.

Пояснения к написанному выше:

« 1) Напряжение между фазой и нейтралью – напряжение между фазным и нейтральным проводниками в заданной точке электрической цепи. »

« 2) Напряжение между фазами – напряжение между двумя фазными проводниками в заданной точке электрической цепи. »

« 3) В однофазной трехпроводной электрической системе, сети или цепи имеются два фазных проводника и нейтральный проводник или PEN-проводник, а также может быть защитный проводник. »

« 4) Термин «напряжение питания» определен стандартом ГОСТ 29322-2014 следующим образом: напряжение между фазами или напряжение между фазой и нейтралью на зажимах питания. »

« 5) Термин «диапазон используемых напряжений» определен стандартом ГОСТ 29322-2014 следующим образом: диапазон напряжений в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники. »

« 6) К потребительским электроустановкам, в том числе, относятся электроустановки зданий. »

Номинальное напряжение трехфазных электроустановок жилых и общественных зданий, медицинских учреждений и торговых предприятий, как правило, равно 400 В, однофазных – 230 В. Это значение было установлено ГОСТ 29322 еще в 1993 г. Однако до сих пор указанное номинальное напряжение не нашло должного применения в нашей стране. Даже на уровне нормативных документов употребляют значения 220 и 380 В.

Наибольшие и наименьшие значения напряжения на зажимах питания и на зажимах электроприемника приведены в справочном приложении А «Наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников для систем переменного тока с номинальным напряжением от 100 В до 1000 В включительно» стандарта ГОСТ 29322-2014.

a) , b) , c) , d) — смотрите текст из таблицы 1

2) Термин «используемое напряжение» (utilization voltage) определен стандартом ГОСТ 29322-2014 так: напряжение между фазами или напряжение между фазой и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электроприемники.

В таблице A.1 указаны наибольшие и наименьшие значения напряжения на зажимах питания и выводах электроприемников. Они рассчитаны по данным таблицы 1 стандарта ГОСТ 29322-2014 и следующим указаниям, приведенным в подразделе 525 «Падение напряжения в установках потребителя» стандарта МЭК 60364-5-52:2001: при отсутствии других соображений, рекомендуется, чтобы на практике падение напряжения между вводом в электроустановку пользователя и электрооборудованием было не более 4% от номинального напряжения электроустановки.

Однако в таблице G.52.1 действующего стандарта ГОСТ Р 50571.5.52-2011 для низковольтных электроустановок, подключаемых к электрическим сетям общего пользования, установлены иные значения максимального падения напряжения:

  • для электрических светильников – 3%;
  • для других электроприемников – 5%.

Поэтому значения наименьшего используемого напряжения, приведенные в таблице A.1 стандарта МЭК 60038, необходимо согласовать с требованиями стандарта ГОСТ Р 50571.5.52-2011. Для этого последнюю колонку таблицы A.1 следует заменить двумя колонками, в которых привести значения наименьшего используемого напряжения, которые рассчитаны с учетом максимального падения напряжения, равного 3 и 5% от номинального напряжения электроустановки.

Читайте также:  Определить действующее значение силы тока в цепи состоящей из

Стандартом МЭК 60449 и его национальным аналогом – ГОСТ 32966-2014 [3] для электроустановок зданий установлено два диапазона напряжения переменного и постоянного тока. В таблице 1 раздела 3 «Диапазоны напряжения переменного тока» приведены два диапазона напряжения переменного тока, а в таблице 2 раздела 4 «Диапазоны напряжения постоянного тока» приведены два диапазона напряжения постоянного тока. По этим диапазонам напряжения классифицируют электроустановки в зависимости от их номинального напряжения.

Эти 2 таблицы в объединенном виде смотрите ниже:

При этом в трехфазной четырехпроводной и однофазной трехпроводной электрических системах переменного тока заземляют нейтрали. В трехфазной трехпроводной и однофазной двухпроводной электрических системах переменного тока, в которых нет нейтралей, заземляют фазные проводники.

В трехпроводной электрической системе постоянного тока заземляют среднюю часть, находящуюся под напряжением. В двухпроводной электрической системе постоянного тока, в которой нет средней части, находящейся под напряжением, заземляют полюсный проводник.

2) Под изолированной или неэффективно заземленной системой понимают электрическую систему, в которой все части, находящиеся под напряжением, изолированы от земли или одна из частей, находящихся под напряжением, заземлена через большое полное сопротивление.

3) Напряжение между фазой и землей – напряжение между фазным проводником и эталонной землей в заданной точке электрической цепи.

4) Напряжение между полюсом и землей – напряжение между полюсным проводником и эталонной землей в заданной точке электрической цепи.

Диапазон II в таблице 1 стандарта ГОСТ 32966-2014 [3] охватывает все номинальные напряжения, указанные в таблице 1 стандарта ГОСТ 29322-2014. Диапазон I устанавливает верхнюю границу сверхнизкого напряжения переменного тока, которое применяют в электроустановках зданий в таких мерах защиты от поражения электрическим током, как «сверхнизкое напряжение, обеспечиваемое БСНН и ЗСНН». В таблице 1 стандарта ГОСТ 29322-2014 указаны номинальные напряжения переменного тока от 100 В до 1000 В, а в низковольтных электроустановках применяют электрооборудование и электрические цепи, функционирующие при напряжении менее 100 В.

Кроме того, в стандарте ГОСТ 29322-2014 не указаны номинальные напряжения постоянного тока для низковольтных электроустановок. Поэтому в таблице 6 подраздела 3.6 «Электрооборудование переменного тока с номинальным напряжением менее 120 В и постоянного тока с номинальным напряжением менее 750В» стандарта ГОСТ 29322-2014 приведены номинальные напряжения электрооборудования переменного тока, попадающие в диапазон I, и электрооборудования постоянного тока, попадающие в оба диапазона напряжения (I и II).

1) Поскольку напряжение элементов или аккумуляторов менее 2,4 В и выбор типа применяемого элемента или аккумулятора для различных областей использования основан на иных критериях, чем его напряжение, эти напряжения не указаны в таблице. Соответствующие технические комитеты МЭК могут устанавливать типы элементов или аккумуляторов и соответствующие напряжения для конкретных применений

2 По техническим и экономическим причинам для специфических областей применения могут потребоваться другие напряжения.

Согласно данным таблицы 6 стандарта ГОСТ 29322-2014 в электрических цепях переменного тока электроустановок зданий, функционирующих при сверхнизком напряжении, обычно применяют электрооборудование, которое имеет номинальное напряжение 6, 12, 24 и 48 В. Возможно также использование электрооборудования с номинальным напряжением 5, 15 и 36 В. Если в электроустановке здания используют электрооборудование постоянного тока, то оно, как правило, имеет значения номинального напряжения, указанные в первых двух колонках таблицы 6 стандарта ГОСТ 29322-2014.

Источник



Различия сетей напряжением до и выше 1000 вольт

Все электрические сети переменного тока в стране классифицируются по различным параметрам и прежде по величине в них напряжения, а именно сети до 1000 вольт и более 1000 вольт, другими словами низковольтные и высоковольтные сети. Естественно, что чем выше напряжение в электрической сети, тем более оно опасно для работающих с ними и вообще для человека.

Граница напряжения в сетях именно в 1000 вольт сложилась исторически и в настоящее время жестко зафиксирована в Правилах устройства электроустановок (ПУЭ). Именно такое разграничение напряжения указывается в допусках специалистов электромонтажных работ , дающих право работы одним с электроустановками напряжением до 1000, а другим свыше 1000 вольт. Основное принципиальное различие в устройстве обоих видов сетей заключается в том, что высоковольтные сети выполняются с изолированной нейтралью, а низковольтные (до 1000 вольт) – с глухо заземленной нейтралью.

То есть нейтраль питающего трансформатора напряжением до 1000 вольт имеет электрическое соединение с землей для того, чтобы все электрические однофазные потребители при всех условиях получали электрический ток одного устойчивого нормативного напряжения, равное в быту 220 В. Если в подобных сетях произойдет короткое замыкание на землю, то электрический ток в сети мгновенно возрастет, в результате чего сработает защита от максимально токовой нагрузки. В целях безопасности пользования электроприборами и электрооборудованием, рассчитанными на напряжение до 1000 вольт, их корпуса должны в обязательном порядке быть заземлены . В этом случае при неисправности прибора, в результате чего его корпус может быть под напряжением, то при прикосновении человека электрический ток устремится к земле, не причиняя вреда человеку.

Опасность травматизма человека в быту от поражения электрическим током продолжает и в наше время оставаться достаточно высокой. Основными источниками опасности в основном являются неисправность бытовой электрической сети, неисправность бытовых электрических приборов, отсутствие приборов электрической защиты и многие другие причины.

Высоковольтные сети, как правило, достаточно большой протяженности и при их симметричной нагрузки нейтраль изолируется от земли и при коротких замыканиях на землю, электрический ток возрастает незначительно. Небольшое увеличение тока в высоковольтных сетях к сожалению не всегда улавливаются приборами защиты и не всегда отключают сеть, в связи с чем сети напряжением выше 1000 вольт более опасны для человека. Именно в связи с повышенной опасностью работы с электрооборудованием высокого напряжения, к работе с ним допускаются специалисты высокой квалификации, имеющие соответствующий допуск.

Работа с высоковольтными сетями осложняется еще и потому, что утечки электрического тока случаются в них достаточно часто, в результате чего еще более повышается степень опасности. По этой причине работы с высоковольтными сетями и оборудованием выполняются в строгом соответствии с требованиями ПУЭ и обязательных регламентов.

Только выполнение всех требований Правил устройства электроустановок, выполнение в установленные сроки регламентных работ по обслуживанию электрических сетей независимо от напряжения и электрооборудования является основным залогом электрической безопасности в быту и на производстве.

Источник