Меню

Найти мощность потребляемую контуром

Электронная библиотека

Пример 1. Логарифмический декремент затухания тела, колеблющегося с частотой 50 Гц, равен 0,01. Определить: 1) время, за которое амплитуда колебаний тела уменьшится в 20 раз; 2) число полных колебаний тела, чтобы произошло подобное уменьшение амплитуды.

Дано: n = 50 Гц; q = 0,01; А = 0,05А0.

Определить: 1) t; 2) N.

Решение. Амплитуда затухающих колебаний записывается в виде:

где А0 – амплитуда колебаний в момент t = 0; d – коэффициент затухания.

Логарифмический декремент затухания равен:q = dT (Т = 1/n – условный период затухающих колебаний). Тогда d = qn и выражение (1) можно записать в виде:

откуда искомое время равно:

Число искомых полных колебаний:

Вычисляя, получим: 1) t = 6 c; 2) N = 300.

Пример 2. Колебательный контур состоит из катушки индуктивностью L = 25 мГн, конденсатора емкостью С = 10 мкФ и резистора. Определить сопротивление резистора, если известно, что амплитуда тока в контуре уменьшилась в е раз за 16 полных колебаний.

Дано: L = 25 мГн; С = 10 мкФ; Ne = 16.

Определить R.

Решение. Число колебаний, совершаемых за время уменьшения амплитуды силы тока в е раз, равно:

где – время релаксации; – условный период затухания колебаний ( – собственная частота контура; – коэффициент затухания).

Подставив эти выражения в (1), получим:

откуда искомое сопротивление равно:

Вычисляя, получим: R = 0,995 Ом.

Пример 3. В колебательном контуре, содержащем конденсатор емкостью С = 5 нФ и катушку индуктивностью L = 10 мкГн и активным сопротивлением R = 0,2 Ом, поддерживаются незатухающие гармонические колебания. Определить амплитудное значение напряжения (UmC) на конденсаторе, если средняя мощность, потребляемая колебательным контуром, составляет 5 мВт.

Дано: С = 5 нФ = 5×10 -9 Ф; L = 10 мкГн = 10 -5 Гн; R = 0,2 Ом; = 5 мВт = 5×10 -3 Вт.

Определить UmC.

Решение. Средняя мощность, потребляемая контуром равна:

где – амплитуда силы тока.

Так как в контуре поддерживаются незатухающие колебания, то . Подставив эти выражения в формулу (1), получим:

откуда найдем искомое амплитудное значение напряжения на конденсаторе:

Вычисляя, получим: UmC = 10 В.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник



Калькулятор мощности – расчет по току, напряжению, сопротивлению

С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета мощности

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I 2 × R
— Мощность по напряжению и сопротивлению: P = U 2 / R

  • I – сила тока, А;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Расчет мощности (закон Ома)

Расчет косинуса фи (cos φ)

φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.

Читайте также:  Мощность тока при 40а

cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.

Формула расчета косинуса фи: cos φ = S / P

  • S – полная мощность, ВА (Вольт-ампер);
  • P – активная мощность, Вт.

Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.

Формула расчета активной мощности: P (Вт) = I × U × cos φ

Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.

Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ

Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности.

Формула расчета полной мощности: S (ВА) = I × U или S = √( P 2 + Q 2 )

Источник

Мощность переменного тока

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть и — мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени — настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины и можно считать постоянными в течение интервала .

Пусть за время через наш участок прошёл заряд (в соответствии с правилом выбора знака для силы тока заряд считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

Мощность тока — это отношение работы электрического поля ко времени, за которое эта работа совершена:

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (1) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: 0′ alt=’P > 0′/> . Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: . Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы «перевешивает» поле движущихся зарядов и «продавливает» ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте — дальше будут конкретные примеры, на которых вы всё и увидите.

Мощность тока через резистор

Пусть переменный ток протекает через резистор сопротивлением . Напряжение на резисторе, как нам известно, колеблется в фазе с током:

Поэтому для мгновенной мощности получаем:

График зависимости мощности (2) от времени представлен на рис. 1 . Мы видим, что мощность всё время неотрицательна — резистор забирает энергию из цепи, но не возвращает её обратно в цепь.

Читайте также:  Сила или мощность броска

Рис. 1. Мощность переменного тока через резистор

Максимальное значение нашей мощности связано с амплитудами тока и напряжения привычными формулами:

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой Гц, т. е. за секунду совершается колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между и . Где же именно?

Посмотрите ещё раз внимательно на рис. 1 . Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует «середине» нашей синусоиды и принимает поэтому значение ?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно .

Этот факт иллюстрируется рисунком 2 .

Рис. 2. Среднее значение квадрата синуса равно

Итак, для среднего значения мощности тока на резисторе имеем:

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока (на самом деле это есть не что иное, как средние квадратические значения напряжения и тока. Такое у нас уже встречалось: средняя квадратическая скорость молекул идеального газа (листок «Уравнение состояния идеального газа»):

Формулы (3) , записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения , а затем к источнику переменного напряжения с таким же действующим значением , то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (4) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые вольт из розетки — это действующее значение напряжения бытовой электросети.

Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение . Как мы знаем, ток через конденсатор опережает по фазе напряжение на :

Для мгновенной мощности получаем:

График зависимости мгновенной мощности от времени представлен на рис. 3 .

Рис. 3. Мощность переменного тока через конденсатор

Чему равно среднее значение мощности? Оно соответствует «середине» синусоиды и в данном случае равно нулю! Мы видим это сейчас как математический факт. Но интересно было бы с физической точки зрения понять, почему мощность тока через конденсатор оказывается нулевой.

Для этого давайте нарисуем графики напряжения и силы тока в конденсаторе на протяжении одного периода колебаний (рис. 4 ).

Рис. 4. Напряжение на конденсаторе и сила тока через него

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, . Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, . Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля.В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы «продавливает» заряды в направлении, противоположном тому, в котором внешнее поле «хочет» их двигать).

Читайте также:  Усилитель мощности балансные входы

3. Третья четверть, . Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока — противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти — опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается нулевой.

Мощность тока через катушку

Пусть на катушку подано переменное напряжение . Ток через катушку отстаёт по фазе от напряжения на :

Для мгновенной мощности получаем:

Снова средняя мощность оказывается равной нулю. Причины этого, в общем-то, те же, что и в случае с конденсатором. Рассмотрим графики напряжения и силы тока через катушку за период (рис. 5 ).

Рис. 5. Напряжение на катушке и сила тока через неё

Мы видим, что в течение второй и четвёртой четвертей периода энергия поступает в катушку из внешней цепи. В самом деле, напряжение и сила тока имеют одинаковые знаки, сила тока возрастает по модулю; для создания тока внешнее электрическое поле совершает работу против вихревого электрического поля, и эта работа идёт на увеличение энергии магнитного поля катушки.

В первой и третьей четвертях периода напряжение и сила тока имеют разные знаки: катушка возвращает энергию в цепь. Вихревое электрическое поле, поддерживающее убывающий ток, двигает заряды против внешнего электрического поля и совершает тем самым положительную работу. А за счёт чего совершается эта работа? За счёт энергии, накопленной ранее в катушке.

Таким образом, энергия, запасаемая в катушке за одну четверть периода, полностью возвращается в цепь в ходе следующей четверти. Поэтому средняя мощность, потребляемая катушкой, оказывается равной нулю.

Мощность тока на произвольном участке

Теперь рассмотрим самый общий случай. Пусть имеется произвольный участок цепи — он может содержать резисторы, конденсаторы, катушки. На этот участок подано переменное напряжение .

Как мы знаем из предыдущего листка «Переменный ток. 2», между напряжением и силой тока на данном участке имеется некоторый сдвиг фаз . Мы записывали это так:

Тогда для мгновенной мощности имеем:

Теперь нам хотелось бы определить, чему равна средняя мощность. Для этого мы преобразуем выражение (5) , используя формулу:

В результате получим:

Но среднее значение величины равно нулю! Поэтому средняя мощность оказывается равной:

Данную формулу можно записать с помощью действующих значений (4) напряжения и силы тока:

Формула (7) охватывает все три рассмотренные выше ситуации. В случае резистора имеем , и мы приходим к формуле (3) . Для конденсатора и катушки , и средняя мощность равна нулю.

Кроме того, формула (7) даёт представление о весьма общей проблеме, связанной с передачей электроэнергии. Чрезвычайно важно, чтобы у потребителя был как можно ближе к единице. Иначе потребитель начнёт возвращать значительную часть энергии назад в сеть (что ему совсем невыгодно), и к тому же возвращаемая энергия будет безвозвратно расходоваться на нагревание проводов и других элементов цепи.

С этой проблемой приходится сталкиваться разработчикам электрических схем, содержащих электродвигатели. Обмотки электродвигателей обладают большими индуктивностями, и возникает ситуация, близкая к «чистой» катушке. Чтобы избежать бесполезного циркулирования энергии по сети, в цепь включают дополнительные элементы, сдвигающие фазу — например, так называемые компенсирующие конденсаторы.

Источник

Adblock
detector