Меню

Найти плотность через мощность

Расчет сечения провода по мощности и по плотности тока: правила, алгоритм, электротехнические тонкости

Расчет сечения провода по мощности и по плотности тока: правила, алгоритм, электротехнические тонкости

Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме. Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода. Давайте разберемся в алгоритме расчетов.

Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:

  • Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
  • Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.

Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.

Неграмотный расчет сечения провода - последствия

«Протоптанные» пути вычислений

Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В. Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.

Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².

Формулы для расчетов сечения провода

Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.

Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.

Правила устройства проводки и расчет сечения провода

Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм². Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена. Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.

Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!

Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:

Формулы для расчета сечения провода

Расчет размера сечения по нагрузке

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.

Расчет сечения провода по мощности - простейший способ

Расчет сечения провода по мощности и по силе тока по таблицам

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчета размера сечения провода по току. Точнее по его плотности.

Допустимая и рабочая плотность тока

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.
Читайте также:  Мощность обычной лампочки накаливания

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Расчет сечения провода по току: таблица и правила

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Таблицы ПУЭ для расчета сечения провода

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

Видео-руководство для точных расчетов

Какой кабель лучше купить?

Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.

Маркировка кабельно-проводниковой продукции для расчетов сечения провода

Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.

Маркировка импортного кабеля для подбора сечения провода по расчетам

Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.

Источник



Найти плотность через мощность

Плотность равна отношению массы тела к его объёму. Плотность обозначают греческой буквой ρ (ро).

Физика 7 класс: все формулы и определения КРУПНО на трех страницах

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Найдите плотность молока, если 206 г молока занимают объем 200 см 3 ?

задача 4

Задача № 2. Определите объем кирпича, если его масса 5 кг?

задача 5

Задача № 3. Определите массу стальной детали объёмом 120 см 3

задача 6

Задача № 4. Размеры двух прямоугольных плиток одинаковы. Какая из них имеет большую массу, если одна плитка чугунная, другая — стальная?

Решение: Из таблицы плотности веществ (см. в конце страницы) определим, что плотность чугуна (ρ2 = 7000 кг/м 3 ) меньше плотности стали (ρ1 = 7800 кг/м 3 ). Следовательно, в единице объема чугуна содержится меньшая масса, чем в единице объема стали, так как чем меньше плотность вещества, тем меньше его масса, если объемы тел одинаковы.

Задача № 5. Определите плотность мела, если масса его куска объемом 20 см 3 равна 48 г. Выразите эту плотность в кг/м 3 и в г/см 3 .

Ответ: Плотность мела 2,4 г/см 3 , или 2400 кг/м 3 .

Задача № 6. Какова масса дубовой балки длиной 5 м и площадью поперечного сечения 0,04 м 2 ?

ОТВЕТ: 160 кг.

РЕШЕНИЕ. Из формулы для плотности получаем m = p • V. С учетом того, что объем балки V = S • l , получаем: m = p • S • l.

Вычисляем: m = 800 кг/м 3 • 0,04 м 2 • 5 м = 160 кг.

Задача № 7. Брусок, масса которого 21,6 г, имеет размеры 4 х 2,5 х 0,8 см. Определить, из какого вещества он сделан.

ОТВЕТ: Брусок сделан из алюминия.

Задача № 8 (повышенной сложности). Полый медный куб с длиной ребра а = 6 см имеет массу m = 810 г. Какова толщина стенок куба?

ОТВЕТ: 5 мм.

РЕШЕНИЕ: Объем кубика VK = а 3 = 216 см 3 . Объем стенок VС можно вычислить, зная массу кубика mК и плотность меди р: VС = mК / р = 91 см 3 . Следовательно, объем полости VП = VK — VC = 125 см 3 . Поскольку 125 см 3 = (5 см) 3 , полость является кубом с длиной ребра b = 5 см. Отсюда следует, что толщина стенок куба равна (а — b)/2 = (6 – 5)/2 = 0,5 см.

Читайте также:  Мотоблоки с задним валом отбора мощности

Задача № 9 (олимпиадный уровень). Масса пробирки с водой составляет 50 г. Масса этой же пробирки, заполненной водой, но с куском металла в ней массой 12 г составляет 60,5 г. Определите плотность металла, помещенного в пробирку.

ОТВЕТ: 8000 кг/м 3

РЕШЕНИЕ: Если бы часть воды из пробирки не вылилась, то в этом случае общая масса пробирки, воды и куска металла в ней была бы равна 50 г + 12 г = 62 г. По условию задачи масса воды в пробирке с куском металла в ней равна 60,5 г. Следовательно, масса воды, вытесненной металлом, равна 1,5 г, т. е. составляет 1/8 массы куска металла. Таким образом, плотность металла в 8 раз больше плотности воды.

Задачи на плотность, массу и объем с решением. Таблица плотности веществ.

Задачи на плотность

Справочный материал для «Задачи на плотность, массу и объем«

Задачи на плотность, массу и объем с решением

Как, зная только массу, рассчитать плотность?

  1. Если объем тела (вещества) неизвестен или не задан явно в условиях задачи, то попытайтесь его измерить, вычислить или узнать, используя косвенные (дополнительные) данные.
  2. Если вещество сыпучее или жидкое, то оно, как правило, находится в емкости, которая обычно имеет стандартный объем. Так, например, объем бочки обычно равен 200 литров, объем ведра – 10 литров, объем стакана – 200 миллилитров (0,2 литра), объем столовой ложки – 20 мл, объем чайной – 5 мл. Об объеме трехлитровых и литровых банок нетрудно догадаться из их названия.
  3. Если жидкость занимает не всю емкость или емкость нестандартная, то перелейте ее в другую тару, объем которой известен.Если подходящей емкости нет, перелейте жидкость с помощью мерной кружки (банки, бутылки). В процессе вычерпывания жидкости просто посчитайте количество таких кружек и умножьте на объем мерной тары.
  4. Если тело имеет простую форму, то вычислите его объем, используя соответствующие геометрические формулы. Так, например, если тело имеет форму прямоугольного параллелепипеда, то его объем будет равен произведению длин его ребер. То есть: Vпар. = a • b • c, где Vпар. – объем прямоугольного параллелепипеда, а a, b, c — значения его длины, ширины и высоты (толщины), соответственно.
  5. Если тело имеет сложную геометрическую форму, то попробуйте (условно!) разбить его на несколько простых частей, найти объем каждой из них отдельно и затем сложить полученные значения.
  6. Если тело невозможно разделить на более простые фигуры (например, статуэтку), то воспользуйтесь методикой Архимеда. Опустите тело в воду и измерьте объем вытесненной жидкости. Если тело не тонет, то «утопите» его с помощью тонкой палочки (проволоки).
  7. Если объем вытесненной телом воды посчитать проблематично, то взвесьте вылившуюся воду, или найдите разность между начальной и оставшейся массой воды. При этом, количество килограммов воды будет равняться количеству литров, количество граммов – количеству миллилитров, а количество тонн – количеству кубометров.

Конспект урока «Задачи на плотность, массу и объем с решением».

Источник

Плотность потока мощности и эквивалентная изотропная излучаемая мощность

Чтобы наземные устройства могли принимать сигналы со спут­ника, необходимо создать у поверхности Земли определенную на­пряженность электромагнитного поля (или плотность потока мощ­ности электромагнитных волн). Мощность электромагнитных волн, излучаемых антенной, является важнейшей характеристикой пере­дающей системы. Излучать их равномерно во все стороны, то есть изотропно, при спутниковом телевизионном вещании нецелесооб­разно и в большинстве случаев недопустимо. Поэтому излучаемая энергия электромагнитных волн концентрируется антенной в узкий луч и направляется на выбранную земную поверхность.

В этом случае для ее оценки пользуются понятием эквивалент­ной изотропной излучаемой мощности ЭИИМ 4 , (Eguivalent isotropi-cally radiated power, EIRP). ЭИИМ (Е) показывает, какую мощность пришлось бы иметь передатчику искусственного спутника, если бы излучение велось изотропно, всенаправленно. Однако благодаря направленным свойствам антенны, требуемая мощность излучения меньше на коэффициент ее усиления. Уровень энергии электро­магнитных волн в точке приема на поверхности Земли зависит от рассеяния энергии по мере удаления от спутника и дополнительных ее потерь в атмосфере Земли. Уровень энергии, падающей на пер­пендикулярную к потоку поверхность, отнесенный к площади этой поверхности, называется плотностью потока мощности — ППМ (W). Для определения ППМ в месте приема, если известны значения ЭИИМ, пользуются формулой:

Первое вычитаемое определяет потери на рассеяние. Второе — учитывает потери в атмосфере Земли, поэтому приведенная фор­мула справедлива для любой погоды. При расчетах для ясной по­годы второе вычитаемое отсутствует. Расстояние до спутника при­нимается равным

Более точно расстояние можно определить по формуле:

где = 42164 км — расстояние от центра Земли до геостационарной орбиты (экваториальный радиус); Ь = (L — S) — разность между географической долготой точки приема (L) и долготой спутника (S); в,— географическая широта точки приема; 0,1513 — частное от де­ления радиуса Земли на траекторию движения спутника.

Для определения значения плотности потока мощности по из­вестной величине эквивалентно изотропной излучаемой мощности (без учета потерь) можно руководствоваться упрощенной формулой (2.4) или графической зависимостью, представленной на рис. 2.3

W(дБ Вт/м ) = Е (дБ Вт) — (2.4)

Плотность потока мощности является очень важной характери­стикой для приема со спутников-ретрансляторов. Она позволяет оценить возможность уверенного приема в данной географической точке на антенну соответствующего размера и при выбранных зна­чениях коэффициента шума и усиления малошумящего усилителя-конвертера. Величина плотности потока мощности влияет на сис­тему спутникового телевизионного вещания. Увеличение ее приво­дит к упрощению и удешевлению наземных приемных устройств, однако усложняет и повышает стоимость передающих систем спут­ника. Уменьшение ППМ, наоборот, удорожает наземные приемные устройства при одновременном удешевлении спутника. Необходи­мая ППМ у поверхности Земли определена путем экономических расчетов с оптимизацией стоимости как приемных наземных уст­ройств, так и передающих спутниковых систем и выбрана с учетом электромагнитной совместимости с наземными службами, т.е. с учетом минимальных взаимных помех

Читайте также:  Какая мощность у современных телевизоров

Рис. 2.3. Графическая зависимость ЭИИМ (Е) от плотности потока мощно­сти (W), позволяющая оперативно взаимно пересчитывать эти величины

Для индивидуальных приемных устройств значение ППМ согласно плана ВАКР-77 (Всемирной Административной Конференции по ра­дио) на границе зоны покрытия 5 должно быть минус 103 дБ Вт/м 2 , а для систем коллективного приема минус 111 дБ Вт/м 2 .

Форма зоны покрытия зависит от точки пересечения (точки при­целивания) основного лепестка излучения антенны спутника с зем­ной поверхностью. Например, точка прицеливания российского спутника ГАЛС-1 находится между Москвой и Саратовом и форма зоны покрытия представляет собой вытянутый эллипс.

Границы зоны покрытия очерчены контурами на географической карте с определенными уровнями ППМ или ЭИИМ. Размеры ее стремятся сделать минимальными, чтобы снизить необходимую мощность передатчика спутника с целью его удешевления.

На практике для рассмотрения возможности приема в данном месте с выбранного спутника пользуются его трансляционными кривыми, нарисованными на контурной географической карте. Они представляют собой ряд замкнутых линий с одинаковыми значениями ППМ (ЭИИМ). В большинстве случаев на картах вме­сто плотности потока мощности отображаются значения ЭИИМ -проекция (Footprint EIRP) уровней ЭИИМ в диапазоне от 40 до 53 дБ Вт.

Следует отметить, что согласно предложениям ВАКР-77 норми­руются значения ППМ, а не ЭИИМ (табл.2.1). Нормирование вели­чины ППМ в зоне приема связывается с углом возвышения антен­ны (углом места) — в направлении на спутник. Допускаемая ППМ будет тем больше, чем больше угол , чем отвеснее падают элек­тромагнитные волны, т.е. чем ближе точка приема расположена к Экватору.

Согласно требованиям ВАКР-77 предельная плотность потока мощности частотно-модулированного телевизионного сигнала для всех видов телефонной связи в контрольной полосе не должна превышать — 152 дБ

Некоторые предельные мешающие значения ППМ от спутников-ретрансляторов для радиорелейных, сотовых, спутниковых теле­фонных систем и т.д. в зависимости от угла е(угла между направ­лением прихода мешающей электромагнитной волны и горизон­тальной горизонтальной плоскостью) приведены в табл.2.1

Зона покрытия — зона обслуживаемой территории Земли, внутри кото­рой создается необходимая для качественного приема плотность потока мощности.

Предельная плотность потока мощности (W) для угла ,

Частота, ГГц
2,5 . 2,69 -152 -152 + 0,75 -137
3,4 . 7,75 -152 -152 + 0,5 -142
10,7. 11,7 -150 -150 + 0,5 -140
12,2 . 12,75 -150 -150 + 0,5 -138
В полосе частот 4,0 кГц

Как видно, плотности потока мощности ограничиваются в диапа­зонах частот выделенных для спутников ФСС.

Требования к равномерности спектра передаваемого теле­визионного сигнала.Для снижения вероятных помех другим сис­темам связи и приемным устройствам всегда необходимо, чтобы спектральная плотность передаваемого сигнала была бы равно­мерной в занимаемой полосе частот, чтобы выбросы энергии не превышали предельно допустимое значение. Известно, что частот­но-модулированный телевизионный сигнал имеет неравномерный энергетический спектр, зависящий от передаваемых сюжетов изо­бражения. Энергия в его спектре распределяется не непрерывно, а в виде дискретных энергетических зон (выбросов,), которые распо­лагаются вокруг частот строчной и кадровой разверток (рис. 2.4).

Рис. 2.4. Временная зависимость выбросов энергии аналогового сигнала на строчной развертке

Поэтому, при спутниковых, как и при наземных телевизионных передачах с частотной модуляцией для получения равномерного спектра прибегают к сглаживанию энергетических выбросов, их рассеянию — дисперсии.

Рис. 2.5. Временная зависимость амплитуды сигнала для дисперсии аналогового сигнала в системе D-MAC/packet

Дисперсия осуществляется сигналом треугольной формы не­большого уровня, который наилучшим образом подходит для сгла­живания энергетических выбросов дискретного спектра, как, напри­мер, показано на рис. 2.5 6 . Сигнал дисперсии накладывается до­полнительно на сигнал несущей строго синхронно с частотой строчной или кадровой разверток (обычно кадровой). Благодаря сглаживанию энергетических выбросов, спектральная плотность при передаче телевизионного сигнала становится равномерной или близко к равномерной.

Это позволяет установить значения ППМ на границе зоны по­крытия для приема индивидуальными приемными устройствами -103 дБ Вт/м 2 , а коллективными — 111 (рис. 2.6), что снижа­ет взаимные помехи и помехи другим наземным средствам связи до требуемого уровня, и одновременно такой уровень дает возмож­ность вести прием телепрограмм через спутники внутри зоны по­крытия на простые приемные устройства.

Для исключения заметности на экране сигнала дисперсии, про­являющегося в виде мерцающих светлых точек, в приемных уст­ройствах применяют хорошо известные схемы построчной фикса­ции (схемы привязки) уровня, которые устанавливают по всему по­лю кадра равномерный уровень черного и тем самым практически подавляют сигнал дисперсии.

Рис. 2.6. Распределение плотности потока мощности спутника TDF-1

Шумы

В любой системе связи наряду с полезными сигналами всегда присутствуют и посторонние, ненужные, которые создают помехи приему. Такие сигналы — помехи, имеющие случайную природу и не передаваемые никакими другими системами, называются шумами. Шумы — это природное явление. В идеальных системах связи сиг­нал мог бы передаваться и приниматься без помех. Однако в лю­бом реальном приемном электронном устройстве всегда присутст­вуют шумы, от которых полностью избавиться невозможно . Они состоят:

□ из внешних принятых шумов ( атмосферные шумы, галакти­ческие шумы, шумы Солнца, Земли и др.)

□ из внутренних шумов приемного устройства (эквивалентные
шумы антенны, шумы коаксиальной линии питания, шумы предва­рительного усилителя, смесителя и т.д.). Они вызывают ухудшение

приема, снижают чувствительность приемного устройства, так как ограничивают прием минимального полезного сигнала по уровню.

Источник