Меню

Найти все токи пользуясь методом узлового напряжения

Применение метода наложения к расчету электрических цепей с двумя и более источниками энергии. Метод узловых потенциалов (узловых напряжений) (главы 3-5 учебного пособия «Теоретические основы электротехники в примерах и задачах») , страница 2

Рис. 4.7. Рис. 4.8.

Задача 4.6. Методом контурных токов определить токи в ветвях цепи (рис. 4.9).Дано: , , , , , , . Положительные направления токов указаны на схеме.

Задача 4.7. Методом контурных токов определить токи в ветвях цепи (рис. 4.10), если , , , , , , .

Рис. 4.9. Рис. 4.10.

Задача 4.8. Методом контурных токов определить показания амперметров установленных в ветвях цепи, схема которой приведена на рис.4.11. Дано: , , , , , .

Задача 4.9. Методом контурных токов рассчитать указанные в схеме (рис. 4.12) токи, если , , , , , , , .

Рис. 4.11. Рис. 4.12.

5. МЕТОД УЗЛОВЫХ ПОТЕНЦИАЛОВ (УЗЛОВЫХ НАПРЯЖЕНИЙ)

Метод узловых потенциалов это метод расчета электрических цепей, в котором за неизвестные принимаются потенциалы (напряжения) узлов схемы. Использование метода позволяет сократить количество составляемых уравнений по отношению к расчету при непосредственном применении законов Кирхгофа.

Определить токи в ветвях цепи (рис. 5.1) методом узловых потенциалов, если , , , , , , , , .

Рис. 5.1. Рис. 5.2.

1. Схема (рис. 5.1) содержит пять ветвей ( ), три узла ( ).

2. Достаточное количество уравнений для расчета цепи по методу узловых потенциалов определяется числом уравнений по первому закону Кирхгофа и равно двум:

Примем потенциал одного из узлов, например узла 1 (рис.5.2), равным нулю ( ).

3. Расчетные уравнения для определения потенциалов и

(узел 2, 3) будут иметь вид:

4. После подстановки в систему числовых значений имеем

5. Решая систему относительно неизвестных потенциалов и , находим

6. Зададим произвольное направление токов в ветвях схемы (рис.5.2). По закону Ома для участка цепи, считая, что ток направлен от узла с большим потенциалом к узлу с меньшим потенциалом, выражаем токи:

7. Проверка решения. Проверку решения выполним, составив уравнение по второму закону Кирхгофа для внешнего контура:

Подставляя числовые значения в уравнение, получим:

Для схемы, представленной на рис. 5.3, пользуясь методом узловых потенциалов, определить все токи. Дано: , , , , , , , , , , , .

1. Схема (рис. 5.3) содержит восемь ветвей ( ), из которых шесть ветвей с неизвестными токами, четыре узла ( ), две ветви с источниками тока ( ).

2. Достаточное количество уравнений для расчета цепи равно трем

Потенциал узла 1 (рис. 5.4) примем равным нулю ( ).

3. Система уравнений для определения потенциалов , и (узлы 2, 3 и 4) согласно рис. 5.4 будет иметь вид:

4. Для расчета приведем систему к матричной форме:

5. После подстановки числовых значений получим

6. Решением матричного уравнения будут потенциалы узлов

7. Зададим направление токов в ветвях схемы, как указано на рис. 5.4 и выразим токи:

8. Проверка решения. Проверку решения выполним по первому закону Кирхгофа, например, для узла 1:

Методом узловых потенциалов определить токи во всех ветвях схемы, изображенной на рис. 5.5. Заданы , , , , , , .

Рис. 5.5. Рис. 5.6.

1. Схема (рис. 5.5) содержит семь ветвей ( ), четыре узла ( ), одна ветвь с источником тока ( )

В цепи имеется ветвь с источником ЭДС , не содержащая сопротивления ( ) т.е. с нулевым сопротивлением.

2. Общее число уравнений для расчета цепи по методу узловых потенциалов при наличии ветви с источником ЭДС, не содержащей сопротивления, равно двум

Примем потенциал узла 1 (рис. 5.6) равным нулю ( ).

П р и м е ч а н и е: Целесообразно принять равным нулю потенциал одной из узловых точек ветви с источником ЭДС с нулевым сопротивлением.

Тогда потенциал узла 2 имеет значение напряжения, равное , т.е. (рис. 5.6).

3. Расчетные уравнения для потенциалов оставшихся узловых точек (узлы 3, 4) будут иметь следующий вид:

4. Подставив в систему числовые значения, получим

5. Решение системы относительно неизвестных потенциалов позволяет получить

6. Зададим направления токов в ветвях цепи, как указано на рис.5.6. По закону Ома выразим токи:

Ток в ветви с источником найдем по первому закону Кирхгофа для узла 1 (рис. 5.6):

7. Проверка решения. По второму закону Кирхгофа для внешнего контура цепи (рис. 5.6) запишем:

После подстановки числовых значений получим:

Вычислить токи в ветвях схемы, рис. 5.7, методом узловых потенциалов, если , , , , , , .

Рис. 5.7. Рис. 5.8.

1. Схема (рис.5.7) содержит четыре ветви ( ), два узла ( ), одна ветвь с источником тока ( ).

Рассматривая частный случай схемы с двумя узлами, воспользуемся для расчета методом двух узлов.

2. Потенциал узла 2 (рис. 5.8) примем равным нулю ( ). Тогда напряжение между узлами 1 и 2 найдем как

3. Направление токов в ветвях цепи зададим в соответствии с указанными на рис. 5.8, тогда

7. Проверка решения. По первому закону Кирхгофа для узла 2 запишем:

Определить показание вольтметра установленного в схеме (рис.5.9), если , , , , , , , . Внутреннее сопротивление вольтметра принять равным . Расчет цепи выполнить по методу узловых потенциалов.

Показание вольтметра определим, как разность потенциалов узловых точек 3 и 2 в местах его подключения: .

1. Определим потенциалы и узловых точек 2 и 3. Схема содержит шесть ветвей ( ), четыре узла ( ), одна ветвь содержит источник тока ( ).

2. Достаточное количество уравнений для расчета цепи методом узловых потенциалов равно трем

Читайте также:  Как создать кратковременный индукционный ток в катушке к2 изображенной

Потенциал узла 4 (рис. 5.9) примем равным нулю ( ).

3. Система уравнений для определения неизвестных потенциалов , и узловых точек 1, 2 и 3 будет иметь вид:

4. Приведем систему к матричной форме:

5. Подставив в систему числовые значения заданных параметров элементов цепи, получим:

6. Из решения системы получим

7. Показания вольтметра найдем как разность потенциалов узловых точек 3 и 2:

Задачи для самостоятельного решения

Задача 5.6. Методом узловых потенциалов рассчитать напряжения узловых точек, указанных на схеме (рис. 5.10), и рассчитать все токи, если , , , , , , , . Потенциал узловой точки 1 принять равным нулю ( ).

О т в е т: потенциалы узлов , , ;

Задача 5.7. Для схемы (рис. 5.11), пользуясь методом узловых потенциалов, определить все токи. Дано , , , , , .

Рис. 5.10. Рис. 5.11.

Задача 5.8. Методом узловых потенциалов найти токи в цепи, схема которой изображена на рис. 5.12, если , , , , , .

Задача 5.9. Для схемы приведенной на рис. 5.13, пользуясь методом узловых потенциалов, определить все токи. Дано: , , , , , .

Рис. 5.12. Рис. 5.13.

Задача 5.10. Методом узловых потенциалов найти токи в схеме цепи (рис. 5.14), если , , , , , , , , . Потенциал узловой точки 4 принять равным нулю ( ).

Рис. 5.14. Рис. 5.15.

Задача 5.11. Методом узловых потенциалов найти токи в схеме (рис.5.15). Дано , , , , , , .

Задача 5.12. Определить показания вольтметров включенных в схеме рис. 5.16, если , , все . Расчет выполнить методом узловых потенциалов.

Задача 5.13. Определить показание вольтметра в схеме цепи рис.5.17, используя метод узловых потенциалов. Дано: , , , , , , , .

Рис. 5.16. Рис. 5.17.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Читайте также:  Устройства защитного отключения узо по току утечки

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.

Решение задач методом узловых потенциалов и методом двух узлов

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 3 = φ 4 + E 2 = 200 B .

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 = J + E 1 R 1 + R ′ 1

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 = J + E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 = 0

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R И Т + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 = 0,155 С м .

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 = 0,102 С м .

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 = 0,09 С м ; g 21 = g 12 = 1 R 2 = 1 25 = 0,04 С м ; g 23 = 1 R 3 = 1 30 = 0,033 С м .

Подставив в уравнения известные величины, получим

Для решения этой системы используем метод определителей. Главный определитель системы

Δ = | 0,155 − 0,04 − 0,04 0,102 | = 0,01421.

Δ 1 = | 39 − 0,04 6,6 0,102 | = 4,242 ; Δ 2 = | 0,155 39 − 0,04 6,6 | = 2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 = 298,6 В ; φ 2 = Δ 2 Δ = 2,583 0,01421 = 181,8 В .

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200 − 298,6 + 150 10 + 15 = 2,056 А .

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200 − 298,6 20 = − 4,93 А ; I 2 = φ 1 − φ 2 R 2 = 298,6 − 181,8 25 = 4,67 А ; I 3 = φ 3 − φ 2 R 3 = 200 − 181,8 30 = 0,607 А ; I 4 = φ 2 − φ 4 R 4 = 181,8 − 0 35 = 5,194 А .

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 = 0.

I 7 = I 3 + I 1 + I 6 = 0,607 + 2,056 − 4,98 = − 2,317 A .

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

1 Находим напряжение между двумя узлами по методу двух узлов

U a b = φ a − φ b = E 1 ⋅ g 1 + J g 1 + g 2 + g 3 = 32 ⋅ 1 1 + 18 1 1 + 1 6 + 1 2 = 30 B .

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус – если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U a b R 1 = 32 − 30 1 = 2 А ; I 2 = U a b R 2 = 30 6 = 5 А ; I 3 = U a b R 3 = 30 2 = 15 А .

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 + J = 0 ; 2 − 5 − 15 + 18 = 0.

Источник

Метод узловых напряжений

Дата публикации: 12 января 2015 .
Категория: Статьи.

В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения.

Рассмотрим сущность этого метода. В данной статье решение задач методом узлового напряжения рассмотрены на примерах.

На рисунке 1 изображена разветвленная электрическая цепь с двумя узловыми точками А и Б, между которыми включены четыре параллельные ветви. Три первые ветви имеют источники электродвижущих сил (ЭДС) (генераторы) с ЭДС E1, E2 и E3.

Рисунок 1. Метод узлового напряжения

Последовательно с генераторами в этих ветвях включены сопротивления r1, r2 и r3 (к ним могут быть отнесены и внутренние сопротивления самих генераторов). В последней ветви включено сопротивление r4. Положительные направления токов в каждой ветви выбраны от точки Б к точке А. Поскольку в первых трех ветвях направление тока совпадало с направлением ЭДС источников электрической энергии, то последние работают в режиме генераторов. Если напряжение между узловыми точками А и Б обозначить U, то ток в первой ветви:

Читайте также:  Ток измеряется в разрыв цепи

аналогично для остальных ветвей:

Применяя для узловой точки А первый закон Кирхгофа, будем иметь:

Заменив токи их выражениями, последнее уравнение записываем так:

Мы получили формулу узлового напряжения.

В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей. В знаменателе формулы дана сумма проводимостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на рисунке 1, то она входит в формулу для узлового напряжения со знаком минус. В общем виде формулу для узлового напряжения можно записать так:

Применяя формулу для узлового напряжения, решим следующий пример.

Пример 1. Для цепи, представленной на рисунке 1, даны ЭДС генераторов E1 = 110 В, E2 = 115 В, E3 = 120 В; внутреннее сопротивление генераторов r01 = 0,2 Ом, r02 = 0,1 Ом, r03 = 0,3 Ом. Сопротивление ветвей r1 = 2,3 Ом, r2 = 4,9 Ом, r3 = 4,7 Ом, r4 = 5 Ом. Определить токи в ветвях.

Расчет цепей методом узловых напряжений начнем с определения проводимости каждой ветви:

Находим узловое напряжение:

Определяем токи в ветвях:

Знак минус у тока I4 показывает, что действительное направление тока обратно тому, которое показано на рисунке 1.
Рассмотрим работу двух генераторов параллельного возбуждения с одинаковыми ЭДС (E1 = E2) и одинаковыми внутренними сопротивлениями (r01 = r02). Схема включения генераторов показана на рисунке 1. Пусть E1 = E2 = 110 В, r01 = r02 = 0,2 Ом. Сопротивление потребителя r3 = 1 Ом. Определить мощность, развиваемую генераторами.

Применяя формулу узлового напряжения, будем иметь:

Мощности, создаваемые генераторами:

Приведенный пример показывает, что при одинаковых ЭДС и одинаковых внутренних сопротивлениях генераторов мощности, отдаваемые каждым генератором в сеть, также равны.

Пусть теперь ЭДС второго генератора E2 стала равной 121 В.

Тогда узловое напряжение

Мощности, создаваемые генераторами:

Следовательно, при параллельной работе генераторов постоянного тока с одинаковым внутренним сопротивлением более загруженным окажется тот генератор, ЭДС которого больше.

Рассмотрим, наконец, случай, когда ЭДС параллельно работающих генераторов одинаковы, но внутренние сопротивления различны.

Пример 2. Дано: ЭДС генераторов E1 = E2 = 110 В, внутренние сопротивления генераторов r01 = 0,2 Ом, r02 = 0,25 Ом, сопротивление внешней части цепи r = 1 Ом. Определить токи генераторов.

Вычисляем узловое напряжение:

При параллельной работе генераторов постоянного тока с одинаковыми ЭДС, но с различными внутренними сопротивлениями более загруженным окажется тот генератор, который имеет меньшее внутреннее сопротивление.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник



Метод узлового напряжения (двух узлов)

ads

Наиболее простым методом расчета электрической цепи с двумя узлами – является метод узлового напряжения или метод двух узлов.

Важно отличать метод узлового напряжения (метод двух узлов) от метода узловых напряжений.

Содержание

Метод узлового напряжения (двух узлов)

Рисунок 1 – Электрическая цепь с двумя узлами

Рисунок 1 – Электрическая цепь с двумя узлами

Определим разность потенциалов между двумя узлами цепи А и B.

Найдём потенциал точки А, перемещаясь по первой ветви от узла B до А.

Исходя из выражения (1) можно записать:

Выразим ток первой ветви

где r1 и g1 – сопротивление и проводимость первой ветви соответственно.

Аналогично составляются уравнения для оставшихся ветвей.

По первому закону Кирхгофа запишем уравнение для узла B

Подставим в вышеуказанное уравнение выражения токов (2-5).

Раскрыв скобки, находим узловое напряжение U:

Общее выражение узлового напряжения

Исходя из вышеизложенного, узловое напряжение равно отношению алгебраической суммы произведений ЭДС на проводимости соответствующих ветвей к сумме проводимостей всех ветвей. ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

Давайте рассмотрим применения метода на конкретном примере.

Пример решения задач методом двух узлов (метод узлового напряжения)

Пример. Электрическая цепь постоянного тока представлена на рисунке 2. Определить токи в ветвях методом двух узлов, если ЭДС источников равна E1 = 40 В, E2 = 50 В, E3 = 10 В, а сопротивления r1 = 10 Ом, r2 = 20 Ом, r3 = 15 Ом, r4 = 12 Ом.

Метод узлового напряжения (двух узлов)

Рисунок 2 – Электрическая цепь

Порядок расчёта:

Метод двух узлов

  1. Так как действительные направления токов до расчёта цепи нам неизвестны — произвольно указываем направления токов в ветвях, например, как на Рисунке 3.

Рисунок 3

  1. Определим проводимость ветвей.

  1. Найдем напряжение U. Для этого воспользуемся формулой 6.

В числителе записываем произведения ЭДС на проводимости соответствующих ветвей, причем ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

В знаменателе указываем сумму проводимостей всех ветвей:

Подставляем раннее найденные значения проводимостей и значения ЭДС указанные в условии задачи:

  1. Определим токи в ветвях. С учетом направления ЭДС

Подставляем численные значения

Токи I3 и I4 получились с отрицательными значениями, следовательно их направление противоположно ранее принятому.

Рисунок 4 – Реальные направления токов.

Рисунок 4 – Реальные направления токов.

Правильность решения можно проверить при помощи баланса мощностей.

Так же для себя правильность решения задачи можно проверить выполнением первого закона Кирхгофа, а именно:

Источник

Найти все токи пользуясь методом узлового напряжения

Метод узловых напряжений

Дата публикации: 12 января 2015 .
Категория: Статьи.

В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения.

Рассмотрим сущность этого метода. В данной статье решение задач методом узлового напряжения рассмотрены на примерах.

На рисунке 1 изображена разветвленная электрическая цепь с двумя узловыми точками А и Б, между которыми включены четыре параллельные ветви. Три первые ветви имеют источники электродвижущих сил (ЭДС) (генераторы) с ЭДС E1, E2 и E3.

Рисунок 1. Метод узлового напряжения

Последовательно с генераторами в этих ветвях включены сопротивления r1, r2 и r3 (к ним могут быть отнесены и внутренние сопротивления самих генераторов). В последней ветви включено сопротивление r4. Положительные направления токов в каждой ветви выбраны от точки Б к точке А. Поскольку в первых трех ветвях направление тока совпадало с направлением ЭДС источников электрической энергии, то последние работают в режиме генераторов. Если напряжение между узловыми точками А и Б обозначить U, то ток в первой ветви:

аналогично для остальных ветвей:

Применяя для узловой точки А первый закон Кирхгофа, будем иметь:

Заменив токи их выражениями, последнее уравнение записываем так:

Мы получили формулу узлового напряжения.

В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей. В знаменателе формулы дана сумма проводимостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на рисунке 1, то она входит в формулу для узлового напряжения со знаком минус. В общем виде формулу для узлового напряжения можно записать так:

Применяя формулу для узлового напряжения, решим следующий пример.

Пример 1. Для цепи, представленной на рисунке 1, даны ЭДС генераторов E1 = 110 В, E2 = 115 В, E3 = 120 В; внутреннее сопротивление генераторов r01 = 0,2 Ом, r02 = 0,1 Ом, r03 = 0,3 Ом. Сопротивление ветвей r1 = 2,3 Ом, r2 = 4,9 Ом, r3 = 4,7 Ом, r4 = 5 Ом. Определить токи в ветвях.

Расчет цепей методом узловых напряжений начнем с определения проводимости каждой ветви:

Находим узловое напряжение:

Определяем токи в ветвях:

Знак минус у тока I4 показывает, что действительное направление тока обратно тому, которое показано на рисунке 1.
Рассмотрим работу двух генераторов параллельного возбуждения с одинаковыми ЭДС (E1 = E2) и одинаковыми внутренними сопротивлениями (r01 = r02). Схема включения генераторов показана на рисунке 1. Пусть E1 = E2 = 110 В, r01 = r02 = 0,2 Ом. Сопротивление потребителя r3 = 1 Ом. Определить мощность, развиваемую генераторами.

Применяя формулу узлового напряжения, будем иметь:

Читайте также:  Строительство крытых токов для зерна

Мощности, создаваемые генераторами:

Приведенный пример показывает, что при одинаковых ЭДС и одинаковых внутренних сопротивлениях генераторов мощности, отдаваемые каждым генератором в сеть, также равны.

Пусть теперь ЭДС второго генератора E2 стала равной 121 В.

Тогда узловое напряжение

Мощности, создаваемые генераторами:

Следовательно, при параллельной работе генераторов постоянного тока с одинаковым внутренним сопротивлением более загруженным окажется тот генератор, ЭДС которого больше.

Рассмотрим, наконец, случай, когда ЭДС параллельно работающих генераторов одинаковы, но внутренние сопротивления различны.

Пример 2. Дано: ЭДС генераторов E1 = E2 = 110 В, внутренние сопротивления генераторов r01 = 0,2 Ом, r02 = 0,25 Ом, сопротивление внешней части цепи r = 1 Ом. Определить токи генераторов.

Вычисляем узловое напряжение:

При параллельной работе генераторов постоянного тока с одинаковыми ЭДС, но с различными внутренними сопротивлениями более загруженным окажется тот генератор, который имеет меньшее внутреннее сопротивление.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник



Метод узлового напряжения (двух узлов)

ads

Наиболее простым методом расчета электрической цепи с двумя узлами – является метод узлового напряжения или метод двух узлов.

Важно отличать метод узлового напряжения (метод двух узлов) от метода узловых напряжений.

Содержание

Метод узлового напряжения (двух узлов)

Рисунок 1 – Электрическая цепь с двумя узлами

Рисунок 1 – Электрическая цепь с двумя узлами

Определим разность потенциалов между двумя узлами цепи А и B.

Найдём потенциал точки А, перемещаясь по первой ветви от узла B до А.

Исходя из выражения (1) можно записать:

Выразим ток первой ветви

где r1 и g1 – сопротивление и проводимость первой ветви соответственно.

Аналогично составляются уравнения для оставшихся ветвей.

По первому закону Кирхгофа запишем уравнение для узла B

Подставим в вышеуказанное уравнение выражения токов (2-5).

Раскрыв скобки, находим узловое напряжение U:

Общее выражение узлового напряжения

Исходя из вышеизложенного, узловое напряжение равно отношению алгебраической суммы произведений ЭДС на проводимости соответствующих ветвей к сумме проводимостей всех ветвей. ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

Давайте рассмотрим применения метода на конкретном примере.

Пример решения задач методом двух узлов (метод узлового напряжения)

Пример. Электрическая цепь постоянного тока представлена на рисунке 2. Определить токи в ветвях методом двух узлов, если ЭДС источников равна E1 = 40 В, E2 = 50 В, E3 = 10 В, а сопротивления r1 = 10 Ом, r2 = 20 Ом, r3 = 15 Ом, r4 = 12 Ом.

Метод узлового напряжения (двух узлов)

Рисунок 2 – Электрическая цепь

Порядок расчёта:

Метод двух узлов

  1. Так как действительные направления токов до расчёта цепи нам неизвестны — произвольно указываем направления токов в ветвях, например, как на Рисунке 3.
Читайте также:  Графическое изображение магнитных линий магнитного поля тока

Рисунок 3

  1. Определим проводимость ветвей.

  1. Найдем напряжение U. Для этого воспользуемся формулой 6.

В числителе записываем произведения ЭДС на проводимости соответствующих ветвей, причем ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

В знаменателе указываем сумму проводимостей всех ветвей:

Подставляем раннее найденные значения проводимостей и значения ЭДС указанные в условии задачи:

  1. Определим токи в ветвях. С учетом направления ЭДС

Подставляем численные значения

Токи I3 и I4 получились с отрицательными значениями, следовательно их направление противоположно ранее принятому.

Рисунок 4 – Реальные направления токов.

Рисунок 4 – Реальные направления токов.

Правильность решения можно проверить при помощи баланса мощностей.

Так же для себя правильность решения задачи можно проверить выполнением первого закона Кирхгофа, а именно:

Источник

Метод узловых (потенциалов) напряжений

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает. Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

Читайте также:  Как создать кратковременный индукционный ток в катушке к2 изображенной

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник