Меню

Нелинейные элементы в цепях постоянного тока

Нелинейные электрические цепи

Назначение нелинейных элементов в электрических цепях

В электрические цепи могут входить пассивные элементы , электрическое сопротивление которых существенно зависит от тока и ли напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Такие элементы и электрические цепи, в которые они входят, называют нелинейными элементами .

Нелинейные элементы придают электрическим цепям свойства, недостижимые в линейных цепях (стабилизация напряжения или тока, усиление постоянного тока и др.). Они бывают неуправляемые и управляемые . Первые — двухполюсники — предназначены для работы без воздействия на них управляющего фактора (полупроводниковые терморезисторы и диоды), а вторые — многополюсники — используются при воздействии на них управляющего фактора (транзисторы и тиристоры).

Вольт-амперные характеристики нелинейных элементов

Электрические свойства нелинейных элементов представляют вольт-амперными характеристиками I(U) экспериментально полученными графиками, отображающими зависимость тока от напряжения, для которых иногда составляют приближенную, удобную для расчетов эмпирическую формулу.

Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику, а управляемые — семейство таких характеристик, параметром которого является управляющий фактор.

У линейных элементов электрическое сопротивление постоянно, поэтому вольт-амперная характеристика их является прямой линией, проходящей через начало координат (рис. 1, а).

Вольт-амперные характеристики нелинейных имеют различную форму и разделяются на симметричные и несимметричные относительно осей координат (рис. 1, б, в).

Вольт-амперные характеристики пассивных элементов: а - линейных, б - нелинейных симметричных, в - нелинейных несимметричных

Рис. 1. Вольт-амперные характеристики пассивных элементов: а — линейных, б — нелинейных симметричных, в — нелинейных несимметричных

Графики для определения статического к дифференциального сопротивлений нелинейных элементов на участках вольт-амперных характеристик: а - восходящем, б - падающем

Рис. 2. Графики для определения статического к дифференциального сопротивлений нелинейных элементов на участках вольт-амперных характеристик: а — восходящем, б — падающем

У нелинейных элементов с симметричной вольт-амперной характеристикой, или у симметричных, элементов, перемена направления напряжения не вызывает изменения значения тока (рис. 1, б), а у нелинейных элементов с несимметричной вольт-амперной характеристикой, или у несимметричных элементов, при одном и том же абсолютном значении напряжения, направленного в противоположные стороны, токи разные (рис. 1, в). Поэтому нелинейные симметричные элементы применяют в цепях постоянного и переменного тока, а нелинейные несимметричные элементы, как правило, в цепях переменного тока для преобразования переменного тока в ток постоянного направления.

Характеристики нелинейных элементов

Для каждого нелинейного элемента различают статическое сопротивление, соответствующее данной точке вольт-амперной характеристики, например, точке А:

R ст = U/I = muOB / miBA = mr tgα

и дифференциальное сопротивление, которое для. той же точки А определяется по формуле:

R диф = dU/dI = muDC / miCA = mr tgβ ,

где mu, mi, mr — соответственно масштаб напряжений, токов и сопротивлений.

Статическое сопротивление характеризует свойства нелинейного элемента в режиме неизменного тока, а дифференциальное — при малых отклонениях тока от установившегося значения. Оба они изменяются при переходе от одной точки и вольт-амперной характеристики к другой, причем первое всегда положительное, а второе — знакопеременное: на восходящем участке вольт-амперной характеристики оно положительное, а на падающем участке — отрицательное.

Нелинейные элементы характеризуются также обратными величинами: статической проводимостью Gст и дифференциальной проводимостью G диф либо безразмерными параметрами —

Kr = — (R диф/ R ст)

или относительной проводимостью:

Kg = — ( G диф / G ст)

У линейных элементов параметры Kr и Kg равны единице, а у нелинейных элементов отличаются от нее, причем чем больше они отличаются от единицы, тем больше проявляется нелинейность электрической цепи.

Нелинейные электрические цепи

Нелинейные электрические цепи рассчитывают графическим и аналитическим методами , в основу которых положены законы Кирхгофа и вольт-амперные характеристики отдельных элементов цепях переменного тока для преобразования переменного тока в ток постоянного направления.

При графическом расчете электрической цепи с двумя последовательно соединенными нелинейными резисторами R1 и R2 с вольт-амперными характеристиками I(U1) и I(U2) строят вольт-амперную характеристику всей цепи I(U) , где U = U1+U2 , абсциссы точек которой находят суммированием абсцисс точек вольт-амперных характеристик нелинейных резисторов с равными ординатами (рис. 3, а, б).

Схемы и характеристики нелинейных электрических цепей

Рис. 3. Схемы и характеристики нелинейных электрических цепей: а — схема последовательного соединения нелинейных резисторов, б — вольт-амперные характеристики отдельных элементов и последовательной цепи, в — схема параллельного соединения нелинейных резисторов, г — вольт-амперные характеристики отдельных элементов и параллельной цепи.

Наличие этой кривой позволяет по напряжению U найти ток I , а также напряжения U1 и U2 на зажимах резисторов.

Аналогично выполняют расчет электрической цепи с двумя параллельно соединенными резисторами R1 и R2 с вольт-амперными характеристиками I1(U) и I 2(U), для чего строят вольт-амперную характеристику всей цепи I ( U ), где I = I1 + I2 , по которой, пользуясь заданным напряжением U , находят токи I , I1 , I2 (рис. 3 , в, г).

Аналитический метод расчета нелинейных электрических цепей основан на представлении вольт-амперных характеристик нелинейных элементов уравнениями соответствующих математических функций, позволяющих составить необходимые уравнения состояния электрических цепей. Поскольку решение таких нелинейных уравнений часто вызывает значительные трудности, аналитический метод расчета нелинейных цепей удобен, когда рабочие участки вольт-амперных характеристик нелинейных элементов могут быть спрямлены. Это позволяет описать электрическое состояние цепи линейными уравнениями, не вызывающими затруднения при их решении.

Источник

Нелинейные элементы в цепях постоянного тока

Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.

Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.

Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.

Читайте также:  Порядок проверки аппаратов защиты от утечек тока

По другому признаку классификации нелинейные элементы можно разделить на инерционные и безынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементов статические характеристики, определяющие зависимость между действующими значениями переменных, отличаются от динамических характеристик, устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.

Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.

В зависимости от вида характеристик различают нелинейные элементы с симметричными и несимметричными характеристиками. Симметричной называется характеристика, не зависящая от направления определяющих ее величин, т.е. имеющая симметрию относительно начала системы координат: . Для несимметричной характеристики это условие не выполняется, т.е. . Наличие у нелинейного элемента симметричной характеристики позволяет в целом ряде случаев упростить анализ схемы, осуществляя его в пределах одного квадранта.

По типу характеристики можно также разделить все нелинейные элементы на элементы с однозначной и неоднозначной характеристиками. Однозначной называется характеристика , у которой каждому значению х соответствует единственное значение y и наоборот. В случае неоднозначной характеристики каким-то значениям х может соответствовать два или более значения y или наоборот. У нелинейных резисторов неоднозначность характеристики обычно связана с наличием падающего участка, для которого , а у нелинейных индуктивных и емкостных элементов – с гистерезисом.

Наконец, все нелинейные элементы можно разделить на управляемые и неуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.

Нелинейные электрические цепи постоянного тока

Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.

В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ). Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.

Параметры нелинейных резисторов

В зависимости от условий работы нелинейного резистора и характера задачи различают статическое, дифференциальное и динамическое сопротивления.

Если нелинейный элемент является безынерционным, то он характеризуется первыми двумя из перечисленных параметров.

Статическое сопротивление равно отношению напряжения на резистивном элементе к протекающему через него току. В частности для точки 1 ВАХ на рис. 1

Под дифференциальным сопротивлением понимается отношение бесконечно малого приращения напряжения к соответствующему приращению тока

Следует отметить, что у неуправляемого нелинейного резистора всегда, а может принимать и отрицательные значения (участок 2-3 ВАХ на рис. 1).

В случае инерционного нелинейного резистора вводится понятие динамического сопротивления

определяемого по динамической ВАХ. В зависимости от скорости изменения переменной, например тока, может меняться не только величина, но и знак .

Методы расчета нелинейных электрических цепей постоянного тока

Электрическое состояние нелинейных цепей описывается на основании законов Кирхгофа, которые имеют общий характер. При этом следует помнить, что для нелинейных цепей принцип наложения неприменим. В этой связи методы расчета, разработанные для линейных схем на основе законов Кирхгофа и принципа наложения, в общем случае не распространяются на нелинейные цепи.

Общих методов расчета нелинейных цепей не существует. Известные приемы и способы имеют различные возможности и области применения. В общем случае при анализе нелинейной цепи описывающая ее система нелинейных уравнений может быть решена следующими методами:

  • графическими;
  • аналитическими;
  • графо-аналитическими;
  • итерационными.

Графические методы расчета

При использовании этих методов задача решается путем графических построений на плоскости. При этом характеристики всех ветвей цепи следует записать в функции одного общего аргумента. Благодаря этому система уравнений сводится к одному нелинейному уравнению с одним неизвестным. Формально при расчете различают цепи с последовательным, параллельным и смешанным соединениями.

а) Цепи с последовательным соединением резистивных элементов.

При последовательном соединении нелинейных резисторов в качестве общего аргумента принимается ток, протекающий через последовательно соединенные элементы. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси напряжений откладывается точка, соответствующая в выбранном масштабе заданной величине напряжения на входе цепи, из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось токов – полученная точка соответствует искомому току в цепи, по найденному значению которого с использованием зависимостей определяются напряжения на отдельных резистивных элементах.

Применение указанной методики иллюстрируют графические построения на рис. 2,б, соответствующие цепи на рис. 2,а.

Графическое решение для последовательной нелинейной цепи с двумя резистивными элементами может быть проведено и другим методом – методом пересечений. В этом случае один из нелинейных резисторов, например, с ВАХ на рис.2,а, считается внутренним сопротивлением источника с ЭДС Е, а другой – нагрузкой. Тогда на основании соотношения точка а (см. рис. 3) пересечения кривых и определяет режим работы цепи. Кривая строится путем вычитания абсцисс ВАХ из ЭДС Е для различных значений тока.

Читайте также:  Прибор для измерения сопротивления тока как обозначается

Использование данного метода наиболее рационально при последовательном соединении линейного и нелинейного резисторов. В этом случае линейный резистор принимается за внутреннее сопротивление источника, и линейная ВАХ последнего строится по двум точкам.

б) Цепи с параллельным соединением резистивных элементов.

При параллельном соединении нелинейных резисторов в качестве общего аргумента принимается напряжение, приложенное к параллельно соединенным элементам. Расчет проводится в следующей последовательности. По заданным ВАХ отдельных резисторов в системе декартовых координат строится результирующая зависимость . Затем на оси токов откладывается точка, соответствующая в выбранном масштабе заданной величине тока источника на входе цепи (при наличии на входе цепи источника напряжения задача решается сразу путем восстановления перпендикуляра из точки, соответствующей заданному напряжению источника, до пересечения с ВАХ ), из которой восстанавливается перпендикуляр до пересечения с зависимостью . Из точки пересечения перпендикуляра с кривой опускается ортогональ на ось напряжений – полученная точка соответствует напряжению на нелинейных резисторах, по найденному значению которого с использованием зависимостей определяются токи в ветвях с отдельными резистивными элементами.

Использование данной методики иллюстрируют графические построения на рис. 4,б, соответствующие цепи на рис. 4,а.

в) Цепи с последовательно-параллельным (смешанным) соединением резистивных элементов.

1. Расчет таких цепей производится в следующей последовательности:

Исходная схема сводится к цепи с последовательным соединением резисторов, для чего строится результирующая ВАХ параллельно соединенных элементов, как это показано в пункте б).

2. Проводится расчет полученной схемы с последовательным соединением резистивных элементов (см. пункт а), на основании которого затем определяются токи в исходных параллельных ветвях.

Метод двух узлов

Для цепей, содержащих два узла или сводящихся к таковым, можно применять метод двух узлов. При полностью графическом способе реализации метода он заключается в следующем:

Строятся графики зависимостей токов во всех i-х ветвях в функции общей величины – напряжения между узлами m и n, для чего каждая из исходных кривых смещается вдоль оси напряжений параллельно самой себе, чтобы ее начало находилось в точке, соответствующей ЭДС в i-й ветви, а затем зеркально отражается относительно перпендикуляра, восстановленного в этой точке.

Определяется, в какой точке графически реализуется первый закон Кирхгофа . Соответствующие данной точке токи являются решением задачи.

Метод двух узлов может быть реализован и в другом варианте, отличающемся от изложенного выше меньшим числом графических построений.

В качестве примера рассмотрим цепь на рис. 5. Для нее выражаем напряжения на резистивных элементах в функции :

; (1)
; (2)
. (3)

Далее задаемся током, протекающим через один из резисторов, например во второй ветви , и рассчитываем , а затем по с использованием (1) и (3) находим и и по зависимостям и — соответствующие им токи и и т.д. Результаты вычислений сводим в табл. 1, в последней колонке которой определяем сумму токов

Таблица 1. Таблица результатов расчета методом двух узлов

Источник

НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

date image2015-01-22
views image4772

facebook icon vkontakte icon twitter icon odnoklasniki icon

Нелинейные элементы электрических цепей, их вольт-амперные характеристики и сопротивления.

Нелинейным элементом электрической цепи считается элемент, значения параметров которого зависят от значения тока данного элемента или напряжения на его выводах.

К нелинейным элементам электрических целей относятся разнообразные электронные, полупроводниковые и ионные приборы, устройства, содержащие намагничивающие обмотки с ферромагнитными магнитопроводами (при переменном токе), лампы накаливания, электрическая дуга и др.

Рис. 1.21. Примеры вольт-амперных характеристик:

а — линейного элемента; б — лампы накаливания; в — полупроводнико- вого диода; г — транзистора (при различных токах базы), д — терморезистора, е – стабилитрона

Нелинейные элементы получают в настоящее время все более широкое распространение, так как они дают возможность решать многие технические задачи. Так, с помощью нелинейных элементов можно осуществить преобразование переменного тока в постоянный, усиление электрических сигналов, генерирование электрических сигналов различной формы, стабилизацию тока и напряжения, изменение формы анналов, вычислительные операции и т д. Нелинейные элементы широко используются в радиотехнических устройствах, в устройствах промышленной электроники, автоматики, измерительной и вычислительной техники.

Важнейшей характеристикой нелинейных элементов является вольт-амперная характеристика (в. а. х.), представляющая собой зависимость между током нелинейного элемента и напряжением на его выводах: I(U) или U(I).

Зависимость между током I и напряжением U любого пассивного элемента электрической цепи подчиняется закону Ома, согласно которому I = U/r. Поскольку у линейных элементов с изменением тока или напряжения сопротивление остается постоянным, их в. а. х. не отличаются от прямой (рис. 1.21, а).

Рис. 1.22 — К расчету электрической цепи с нелинейным элементом графо-аналитическим методом

У нелинейных элементов в. а. х. весьма разнообразны и для некоторых из них даны на рис. 1.21,б — е. Там же приведены условные графические обозначения соответствующих элементов. Общее условное обозначение любого нелинейного резистивного элемента показано на рис. 1.22, а.

Имея в. а. х. нелинейного элемента, можно определить его сопротивления при любых значениях тока или напряжения. Различают два вида сопротивлений нелинейных элементов: статическое и дифференциальное.

Статическое сопротивление дает представление о соотношении конечных значений напряжения и тока нелинейного элемента и определяется в соответствии с законом Ома. Например, для точки А в. а. х. (рис. 1.21,б) статическое сопротивление

,

где mu и mi — масштабы напряжения и тока.

Дифференциальное сопротивление позволяет судить о соотношении приращений напряжения и тока и определяется следующим образом:

,

К нелинейным электрическим цепям применимы основные законы электрических цепей, т. е. закон Ома и законы Кирхгофа. Однако расчет нелинейных цепей значительно труднее, чем линейных, Объясняется это тем, что кроме токов и напряжений, подлежащих обычно определению, неизвестными являются также зависящие от них сопротивления нелинейных элементов.

Читайте также:  Виды превращения энергии у источника тока

Для расчета нелинейных электрических цепей применяется с большинстве случаев графоаналитический метод. Однако если в предполагаемом диапазоне изменения тока или напряжения нелинейного элемента его в. а. х. можно заменить прямой линией, то расчет можно производить и аналитическим методом.

Следует отметить, что к той части электрической цепи, которая содержит линейные элементы, применимы все методы расчета и преобразования электрических цепей, рассмотренные ранее.

Аналитический метод расчета нелинейных электрических цепей. Предположим, что имеется некоторый нелинейный элемент, в. а. х. которого приведена на рис. 1.26, а. Если данный элемент должен работать на линейном участке cd в.а.х., то для расчета и анализа можно использовать аналитический метод.

Чтобы выяснить зависимость между напряжением и током участка cd и построить схему замещения нелинейного элемента, работающего на данном участке, продлим его до пересечения в точке а с осью абсцисс и будем считать, что в точке пересечения напряжение U равно некоторой ЭДС Е.

Рис. 1.26. К расчету электрической цепи с нелинейным элементом аналитическим методом

Для рис. 1.26, а справедливо следующее очевидное соотношение:

Ob = Oa + ab = Oa + bx tgβ. (1.44)

Выразив в (1.44) отрезки через соответствующие электротехнические величины и масштабы напряжения и тока, получим

После умножения на масштаб напряжения будем иметь

(1.45)

где rd — дифференциальное сопротивление нелинейного элемента на участке cd его в. а. х.

Полученному уравнению (1.45) согласно второму закону Кирхгофа соответствует схема замещения amb (рис. 1.26,б) нелинейного элемента, работающего на линейном участке cd.

Допустим, что нелинейный элемент получает питание от эквивалентного генератора с параметрами Eэ и r (рис. 1.26,б), заменяющего некоторый активный двухполюсник. Тогда по второму закону Кирхгофа можно написать

(1.46)

Используя (1.45) и (1.46), нетрудно решать многие задачи, связанные с расчетом и анализом нелинейной электрической цепи. Например, по (1.46) можно определить ток Ix , а по (1.45) — напряжение Ux при заданных Eэ, r и rd.

Если графическое определение ЭДС E вызывает затруднение, можно найти ее, воспользовавшись выражением (1.45) и подставив в него известные координаты одной из точек участка cd.

Источник



1.17. Нелинейные элементы в цепях постоянного тока

Нелинейные элементы (НЭ) подразделяются на управляемые и неуправляемые. В управляемых НЭ, в отличие от неуправляемых, кроме основной цепи, есть еще управляющая цепь, воздействуя на ток или напряжение которой, можно деформировать ВАХ основной цепи. Для неуправляемых НЭ ВАХ изображается одной кривой, а для управляемых — семейством кривых. В группу неуправляемых НЭ входят: лампы накаливания, выпрямительные диоды, стабилизаторы и т. д. В группу управляемых НЭ входят три и более электродные лампы, транзисторы и т. д. На рис. 1.32 показаны ВАХ некоторых НЭ. Чем больше протекающий через нить лампы накаливания ток, тем нить сильнее нагревается и тем больше становится ее сопротивление. Некоторые типы термосопротивлений имеют симметричную ВАХ. Полупроводниковые диоды пропускают ток практически только в одном, проводящем направлении.

Рис. 1.32. Типовые ВАХ: a – лампы накаливания; b – термосопротивления; c – полупроводникового диода

Каждый НЭ характеризуется ВАХ, статическим и дифференциальным сопротивлениями.

Статическое сопротивление Rcm равно отношению напряжения к току в данной точке, например, в точке А рис. 1.32, а:

.

Дифференциальное (динамическое) сопротивление Rд равно отношению бесконечно малого приращения напряжения dU к соответствующему приращению тока dI:

.

Дифференциальное сопротивление характеризует НЭ при достаточно малых отклонениях от предшествующего состояния, используется при исследовании вопроса об устойчивости режимов работы нелинейных цепей.

1.18. Методы расчета цепей постоянного тока с нелинейными элементами

Существует два метода расчета: аналитический и графоаналитический. Первый метод ввиду его сложности в данном курсе не рассматривается. Второй метод заключается в построении общей ВАХ всей цепи по ВАХ отдельных элементов, которые снимаются экспериментально, могут быть заданы в графической или табличной форме, взяты из паспорта НЭ.

Расчет цепи с последовательными соединением НЭ. На рис. 1.33 два нелинейных элемента соединены последовательно. Как известно, ток I при последовательном соединении элементов на всех участках цепь одинаков, а напряжение U = U1 + U2 согласно второму закону Кирхгофа.

На рис. 1.34. приведены ВАХ первого и второго НЭ, а также ВАХ всей цепи, которая построена следующим образом. Проводим пунктиром прямые параллельно оси напряжения. Чем больше прямых, тем точнее получается расчет. Складывая напряжения точек пересечения, получаем напряжение точки кривой I = f(U). Соединив все точки, получаем ВАХ всей цепи.

Рис. 1.33. Последовательное соединение двух нелинейных элементов

Рис. 1.34. Построение общей ВАХ всей цепи при последовательном соединении нелинейных элементов

Расчет цепи с параллельным соединением НЭ. По первому закону Кирхгофа для цепи рис. 1.35 можно записать I = I1 + I2. Напряжение на

Рис. 1.35. Параллельное соединение двух НЭ

элементах цепи равно входному U. Построение общей характеристики I = f(U) производится путем складывания ординат кривых I1 = f(U1) и I2 = f(U2) на рис.1.36.

Рис. 1.36. Построение общей ВАХ всей цепи при параллельном соединении НЭ

Расчет цепи со смешанным соединением НЭ. На схеме рис. 1.37. R2 и R3 соединены параллельно, но последовательно с R1, поэтому расчет проводим в два этапа. Вначале строим общую ВАХ I2,3 = f(U2,3) для второго и третьего элемента, затем ВАХ всей цепи I = f (U), как показано на рис. 1.38.

Рис. 1.37. Смешанное соединение трех нелинейных элементов

На рис.1.34. 1.36 и 1.38 показаны построения для одной точки ВАХ I = f(U).

Рис. 1.38. Построение общей ВАХ всей цепи при смешанном соединении НЭ

Источник