Меню

Нервные токи что это такое

Увидевший нервный ток. Герберт Гассер

04 октября 2015

Увидевший нервный ток. Герберт Гассер

  • 656
  • 0,5
  • 1

Добавить в избранное print
Обзор

Автор
Редактор
  • Биомембраны
  • Ионные каналы
  • Нейробиология
  • Нобелевские лауреаты

Наш нынешний герой — удивительный человек, американский врач и ученый, переживший две мировые войны, — основал нейрофизиологию как науку, впервые расшифровал «язык» мозга и, по мистическому стечению обстоятельств, умер от мозгового заболевания. В своих научных амбициях он сумел заглянуть в мыслительный аппарат человека — туда, где даже сейчас есть сотни неразгаданных вопросов и неубедительных гипотез. Речь пойдет о Герберте Гассере, «медицинском» нобелевском лауреате 1944 года. Формулировка Нобелевского комитета: «за открытия, имеющие отношение к высокодифференцированным функциям отдельных нервных волокон».

Герберт Спенсер Гассер всю жизнь ставил научные интересы выше личных. Так ни разу и не женившись, он воплотил всю свою творческую энергию в научных экспериментах, монашески посвятив жизнь нейрофизиологии. Фамилия Гассер звучала слишком грубым немецким акцентом в Америке, а всё потому, что она происходила от немецкого слова «Gasser», означающего главную улицу и произносимого в Австрии (откуда эмигрировал его отец) с особым тирольским придыханием.

Джозеф Эрлангер

Рисунок 1. Джозеф Эрлангер (1874–1965). Американский физиолог, занимавшийся преимущественно кардиологией и нейрофизиологией. Вместе с Гассером изучал возбудимость нейронов и идентифицировал разные типы нервных волокон, вместе они и Нобелевскую премию 1944 года получили.

Отец Герберта — Герман Гассер — работал врачом и, видимо, сумел воспитать у маленького сына интерес к тому, как устроен человеческий организм, что не могло не сказаться на его дальнейшей судьбе. Мать, Джейн Грисволд, была обычной учительницей в средней школе небольшого висконсинского города Платтвилла, куда и пошел учиться будущий нобелевский лауреат.

По воспоминаниям самогό Гассера, никаких развлечений, кроме выездов на природу, у школьников не было. Единственным удовольствием стало владение камерой Kodak и увлечение фотографией. Потом оно пригодилось во время занятий физиологией. А еще он очень любил читать. В том числе — отцовские книги, среди которых попадались труды Чарльза Дарвина и Герберта Спенсера (кстати, тёзки нашего героя). Таким образом, «главной улицей» Герберта Гассера стал его путь в науку. А точнее — в биологию. Начало его лежало в Висконсинском университете: в 1907 году Гассер поступил на отделение зоологии и, закончив его в 1909-м, перешел в университетскую медицинскую школу, где изучал физиологию под руководством Джозефа Эрлангера (рис. 1) и фармакологию под руководством Артура Лёвенхарта. Надо сказать, Эрлангер взял шефство над столь способным учеником и принял его к себе в ассистенты. Так Герберт Гассер получил первую ставку и опубликовал несколько научных статей о биохимических и неврологических сигналах, регулирующих частоту сердечных сокращений.

Распространения нервного импульса

Рисунок 2. Процесс распространения нервного импульса по отростку нервной клетки происходит за счет мгновенного перезаряда внешней и внутренней сторон мембраны клетки [1].

Вдохновившись примером своего учителя, он, так же как и Джозеф Эрлангер в свое время, решает перевестись в медицинскую школу Университета Джонса Хопкинса (1913), где два года спустя получает заветные буквы «M.D.» в качестве дополнения к фамилии. Спустя еще четыре года он вновь присоединяется к Эрлангеру, который уже работает заведующим физиологическим отделением в медицинской школе Университета Вашингтона в Сент-Луисе. С того момента учителя и ученика объединяла не только безраздельная любовь к науке, но желание выяснить, как «общаются» между собой нервные клетки головного мозга. И тут не обошлось без электричества.

Еще Фарадей сказал: «Как ни чудесны законы и явления электричества, которые мы наблюдали в мире неорганического вещества и неживой природы, интерес, который они представляют, вряд ли может сравниться с тем, что вызывает та же сила в соединении с нервной системой и жизнью». Организм человека и животных является полностью электрифицированной системой: чтобы двинуть ногой или бросить взгляд, мозг направляет по нервам к мышцам электрический нервный импульс (рис. 2) и получает от них «отчет о проделанной работе» тоже в виде электрического сигнала.

Осциллограф Вуда

Рисунок 3. Осциллограф Вуда (1923 год). Этот архетип современных осциллографов разработал Джозеф Томсон — «физический» нобелевский лауреат 1906 года (в том числе за открытие электрона), — а сконструировал и протестировал «акустический гений» Альберт Вуд.

Потенциал действия одной клетки настолько мал, что, даже если сложить потенциалы сотен тысяч клеток мозга и подключить к ним один провод, этого электричества не хватит, чтобы зажечь одну лампочку. Не меньшей проблемой является создание прибора, который будет столь высокочувствителен, что сможет регистрировать этот сигнал. Еще во время обучения в Университете Джонса Хопкинса Герберт Гассер вместе с коллегой из Висконсина Сидни Ньюкомер занялся усилением электрических сигналов от отдельных нервных волокон с помощью вакуумных трубок (точно такие же устройства применял небезызвестный Маркони, который тоже получил «нобеля» — за изобретение радио).

Однако работы пришлось прервать — как и многим другим ученым в мире. В научные эксперименты вмешалась Первая мировая война. Герберт Гассер замораживает эксперимент и приступает к изучению травматического шока, что важно для помощи раненым бойцам с потерей крови [2]. Его вовлекают и во многие другие фармакологические исследования в отделе Химической военной службы в Вашингтоне. Однако сразу после окончания войны Гассер возвращается к своим экспериментам и публикует вместе с Ньюкомером статью об усилении нервных импульсов [3], которые он регистрирует с помощью обычного пружинного гальванометра. Однако ученым сразу становится понятно, что для регистрации амплитуды нервного импульса нужен более современный прибор, чем гальванометр. Этот прибор должен одновременно считывать все параметры изменения электрического сигнала и записывать их на ленту. Говоря современным языком, ученые нуждались в осциллографе.

С 1880 года начали появляться различные варианты осциллографов: полуавтоматический сменился магнитоэлектрическим, и в доработанном компанией Western Electric виде к 1920 году он представлял собой катодную трубку — аналог той, которая находилась в наших телевизорах до появления плазм и ЖК-экранов (рис. 3). Именно таким осциллографом Гассер и Эрлангер регистрируют запись «языка» головного мозга в виде электрических импульсов, возникающих на нервных клетках [4].

Первая классификация нервных волокон

Рисунок 4. Иллюстрация к нобелевской лекции Герберта Гассера «Нервные волокна млекопитающих». Приведена первая классификация нервных волокон в зависимости от скорости проведения нервного импульса. Гассер предложил выделить условные группы: А (0,45 миллисекунд), В (1,2 миллисекунды) и С (около 2,0 миллисекунд). Рисунок из [5].

Они впервые поняли, что общий «шум» на ленте осциллографа — это не что иное, как совокупность электрических импульсов от различных нервов, причем скорость проведения электрического сигнала зависит от толщины нервного волокна. Чем толще нерв, тем быстрее он способен передавать сигнал (рис. 4). Эту гипотезу высказал впервые еще в 1907 году шведский физиолог Густав Гётлин, но с тех пор ее никто даже не пытался проверить.

Гассер выяснил, что одни нервы, которые потом назвали афферентными, передают сигнал только о наших ощущениях, а другие нервы — эфферентные — отвечают только за движение мышц.

Вот пример. При кокаиновой интоксикации у человека возникает расторможенность в теле, эйфория и снижение болевой чувствительности, и связано это, как оказалось в результате экспериментов Гассера, с блокированием кокаином проведения нервного импульса сначала по толстым волокнам группы С, а затем — по тонким волокнам группы А. Недостаток кислорода тоже в своем роде «действует на нервы» — сначала отключая волокна А, а потом уже С.

Рассуждая о значении этих типов волокон, в своей нобелевской лекции Гассер сообщает: «Одно из открытий, ярко выделяющееся в общей картине, привело нас к очень простому выводу: волокна групп А и С отвечают за формирование ощущения боли вообще» [5].

Читайте также:  Чему равна эдс самоиндукции в катушке с индуктивностью l 2гн при равномерном уменьшении силы тока

Для наглядности классификации Гассер внес все параметры в единую таблицу, которую и сейчас можно найти в современных медицинских справочниках. Эти опыты значительно продвинули ученых в понимании механизма возникновения боли и легли в основу нового направления — нейрофизиологии. Все полученные сведения позднее вошли в теорию нервной проводимости, разработанную нобелевскими лауреатами Аланом Ходжкином и Эндрю Хаксли в 1952 году.

Эти эксперименты дали серьезный толчок научной карьере Герберта Гассера, и в 1921 году его повышают до профессора фармакологии в Вашингтонском университете.

Через два года Гассер уезжает в Европу, получив грант на обучение, где продолжает начатую работу с известными учеными Арчибальдом Хиллом и Генри Дейлом [6], каждый из которых впоследствии получит Нобелевскую премию по физиологии и медицине — в 1922 и 1936 годах соответственно. По возвращении в 1931 году Герберт Гассер становится профессором психологии и главой медицинского департамента в Корнелльском университете в Нью-Йорке, а спустя четыре года уже возглавляет Рокфеллеровский институт медицинских исследований (сейчас Рокфеллеровский университет), позже пополнив список его почетных членов. Впрочем, в 1930-х годах Гассеру стало особо не до собственных занятий наукой: руководить институтом в период после Великой депрессии — не самая спокойная работа. А в 1936 году у Гассера появилась еще одна важнейшая должность — главный редактор The Journal of Experimental Medicine, — которую он исполнял по 1957 год.

Рагнар Гранит

Рисунок 5. Рагнар Гранит (1900-1991). Шведский нейрофизиолог, нобелевский лауреат 1967 года («за открытия, связанные с первичными физиологическими и химическими зрительными процессами, происходящими в глазу»), зачитывавший торжественную речь о достижениях Эрлангера и Гассера.

В 1937 году в соавторстве с Эрлангером Гассер пишет книгу «Электрическая регистрация нервной деятельности» [7] и пытается продолжить работу, но тут снова вмешивается война, на сей раз — Вторая мировая, которая замораживает многие научные проекты в пользу военных разработок. Присужденную в 1944 Гассеру и Эрлангеру Нобелевскую премию «за открытия, имеющие отношение к высокодифференцированным функциям отдельных нервных волокон» вручили только год спустя, когда закончились военные действия. Тогда же Гассер и прочел свою лекцию «Нервные волокна млекопитающих» [5]. А сразу после присуждения премии руководитель отделения нейрофизиологии Королевский Каролинский институт Рагнар Гранит (рис. 5) выступил по радио с речью об открытиях, сделанных Эрлангером и Гассером:

«В 1907 году шведский физиолог Густав Гётлин предположил, что скорость проведения импульса толстыми нервными волокнами больше, чем тонкими. Основанием для такого взгляда была формула Томсона для кабельной проводимости. Это предположение дало физиологическую интерпретацию хорошо известного факта, что отдельные волокна нервного ствола могут отличаться в поперечном сечении. Некоторые волокна составляют менее 0,001 мм в диаметре, другие чуть больше 0,020 мм. Лапи́к и его коллеги с 1913 года опубликовали несколько работ, в которых были выдвинуты косвенные доказательства в поддержку этой точки зрения. В серии замечательных исследований — замечательных в отношении как техники, так и ценности полученной информации — Эрлангер и Гассер доказали эту гипотезу. Как это часто бывает в экспериментальных науках, дополнительные шаги, необходимые для полной ясности и развития новой методики, привели к росту экспериментального поля и повышению значимости этой тематики. Вроде бы простые волокна оказались наделены высокой степенью дифференциации. Рассмотрение нервных волокон как продолжения нервных клеток имело важные последствия для познания физиологии высших центров, таких как головной и спинной мозг. Этому факту следует придать особое значение в оценке важности работы Эрлангера и Гассера» [8].

В 1953 году Гассер уходит с поста директора Рокфеллеровского института и продолжает заниматься изучением типов нервных волокон; впервые применяет электронный микроскоп для неврологических изысканий. Но, увы, работать ему оставалось недолго. По иронии судьбы, именно нервные центры и пострадали: ученого поразил инсульт. Последние годы жизни он провел прикованным к постели. Впрочем, титулы и звания продолжали сыпаться на Гассера: наш герой заслужил почетные степени четырех университетов и огромный список титулов. Он был членом Национальной академии наук, Американской ассоциации по развитию науки, Американского физиологического общества, Американского общества фармакологии и экспериментальной терапии, Ассоциации американских врачей, Американского философского общества и Гарвеевского общества. Впрочем, что более важно — его до сих пор вспоминают не только как ученого, но и как обаятельного и очень гостеприимного человека, на первом месте у которого всё же была наука.

Ну и последнее: автор рубрики — человек не жадный. И я стараюсь вовлекать в мир нобелевских лауреатов новых и новых авторов. Бόльшая часть этого текста написана моей коллегой, Викторией Зюлиной, а я лишь добавил несколько завершающих штрихов.

Источник

Электронейромиография: единственная в своём роде

Как проверить работу мышц и нервов?

О современном и информативном методе их исследования — электронейромиографии — рассказывает врач функциональной диагностики «Клиника Эксперт» Курск Екатерина Николаевна Митина.

— Екатерина Николаевна, в июле прошлого года в вашей клинике был открыт новый вид услуг: электронейромиография. Расскажите об этом методе диагностики подробнее. Что это такое?

Электронейромиография (ЭНМГ) – это современный комплекс методов оценки функционального состояния нервно-мышечной системы. Что показывает электронейромиография? Она позволяет зарегистрировать, а затем качественно и количественно оценить разные виды электрической активности нервов и мышц. Эти данные позволяют сделать выводы о работе нервно-мышечной системы.

ЭНМГ может выполняться на любой части тела (например, на лице, спине, нижних и верхних конечностях).

— С какой целью проводится эта диагностика? Какие заболевания она позволяет выявить?

Главная цель — подтвердить или исключить поражение нервно-мышечной системы. Показанием к проведению электронейромиографии является наличие симптомов повреждения нервов и мышц или подозрение на наличие патологий, протекающих с поражением данных систем: нейропатий, радикулопатий, болезней мотонейронов, первично-мышечных поражений, миастений и ряда других.

Приведу конкретные примеры. Предположим, у человека плохо работает стопа. С чем это связано? С суставом? Сухожилиями, связками? Или с нервами и мышцами? ЭНМГ может исключить или обнаружить патологию последних.

Другой пример — разрыв нерва, который не виден на глаз. Чтобы его восстановить, нейрохирургам нужно знать место разрыва. В решении этого вопроса также может помочь электронейромиография.

«Из дополнительных методов применяется рентгенография, в том числе и с функциональными пробами, магнитно-резонансная и компьютерная томография, миелография, электронейромиография, лабораторные исследования». Цитата из материала «Дорсопатия: что это такое и как её лечить?»

— У метода ЭНМГ есть противопоказания?

Абсолютных противопоказаний к проведению электронейромиографии нет. Среди относительных:

— гнойные образования в местах наложения электродов и точках стимуляции;

— нестабильные психические состояния, эпилепсия.

— Электромиография может быть стимуляционной или игольчатой. Чем они отличаются?

Способом наложения электродов и методикой проведения процедуры. При стимуляционной электронейромиографии электроды наклеиваются на кожу, затем проводится стимуляция с помощью небольшого разряда тока. При этом исследуются периферические нервные окончания.

При игольчатой электрод в виде тонкой иглы вводится в мышцу, стимуляция током не выполняется. Исследуются мышцы.

— В чём различия между электромиографией и электронейромиографией?

Электромиография оценивает функциональное состояние мышечных волокон, а электронейромиография — нервных окончаний.

— У метода ЭНМГ есть альтернатива?

В определённых ситуациях это может быть магнитно-резонансная томография — например, при травмах нервов. В таких случаях она может ответить на вопрос, есть ли разрыв нерва (полный или частичный). Однако это выполнимо, если речь идёт о достаточно крупных нервах. В процессе исследования МРТ показывает структуру нерва, но ничего не говорит о его функции, что под силу ЭНМГ.

Читайте также:  Укажите рисунок соответствующий схеме расположения силовых линий магнитного поля катушки с током

— Как проходит процедура электромиографии и сколько она длится по времени?

При стимуляционной электронейромиографии на мышцу и сухожилия наклеиваются электроды, после чего в определённых точках проводится стимуляция небольшим током. Ткани отвечают, сигналы регистрируются, после чего проводится анализ полученных данных.

При игольчатой электромиографии в мышцу вводятся игольчатые электроды, в состоянии покоя и при небольшом мышечном напряжении регистрируются потенциалы с данных волокон, которые затем подвергаются анализу и комплексной оценке. Стимуляция током при этом не проводится.

Продолжительность этих процедур зависит от того, какой объем исследований планируется провести (например, 1, 2 или все конечности). Приблизительно время составляет 20-30 минут.

— Служат ли показания ЭНМГ основанием для получения инвалидности?

Нет. Заключение ЭНМГ само по себе не является диагнозом. Для назначения группы инвалидности необходимо комплексное обследование.

Заключение ЭНМГ само по себе
не является диагнозом

— С какого возраста может проводиться электронейромиография?

Вообще с первых дней жизни. В условиях нашей клиники мы обследуем детей с 5-летнего возраста.

— Екатерина Николаевна, для того, чтобы пройти электромиографию в вашей клинике, необходимо направление врача?

Оно желательно, но не обязательно.

— Какая подготовка потребуется пациенту перед прохождением процедуры электронейромиографии?

Она требуется лишь определённой группе пациентов, которым необходимо исключить миастению. После консультации с лечащим врачом перед исследованием отменяется приём так называемых антихолинэстеразных препаратов.

В иных случаях подготовка не нужна.

Где сделать электронейромиографию

Данная услуга предоставляется в следующих городах: Владикавказ , Борисоглебск , Тверь , Смоленск , Воронеж , Ростов-на-Дону , Курск , Ставрополь , Тула

Митина Екатерина Николаевна

Выпускница лечебного факультета Курского государственного медицинского университета 2015 года.

В 2016 году прошла интернатуру по терапии, а в 2017 году — специализацию по функциональной диагностике.

В настоящее время — врач функциональной диагностики в «Клиника Эксперт» Курск. Принимает по адресу: Принимает по адресу: ул. Карла Либкнехта, д. 7.

Источник

Диагностика с помощью ЭМНГ

Электронейромиография (ЭНМГ) – инновационный метод исследования функции нервной и мышечной системы, который врачи Юсуповской больницы широко используют в диагностике различных заболеваний. Нейрофизиологи Юсуповской больницы применяют все известные сегодня методы электронейрографии.

Врачи Юсуповской больницы с помощью ЭНМГ выявляют заболевания нервов и мышц на ранних стадиях, когда при клиническом осмотре отклонений ещё не наблюдается, устанавливают уровень поражения нерва. Индивидуальный подход к выбору метода электронейромиографии позволяет провести дифференциальную диагностику между периферическим поражением нерва, нервного корешка и сплетения, оценить тяжесть поражения мышц и периферической нервной системы и мышц, оценить результаты лечения и степень восстановления, характер течения заболевания. С помощью ЭНМГ неврологи определяют причину нарушения мочеиспускания и эректильной дисфункции.

Диагностика с помощью ЭМНГ

Методики

Для обследования пациентов используют пятиканальный электронейромиограф «Скайбокс». Он обладает следующими основными преимуществами:

  • компактный;
  • молниеносно регистрирует ЭНМГ;
  • вызванные потенциалы всех модальностей находятся в базовом комплекте;
  • регистрирует электронейромиограмму по мировым стандартам.

Мышечные волокна сокращаются за счёт происходящих в нём электрохимических реакций, в результате чего возникает очень слабый электрический потенциал. Электромиограф усиливает его и выводит в виде кривой на мониторе компьютера. Расшифровав полученный результат, нейрофизиологи определяют, какие патологические изменения имеются в нервах и мышцах.

Периферические нервы берут свое начало в спинном мозге и нервных узлах, которые расположены рядом с ним в виде «корешков». Различают следующие виды периферических нервов:

  • моторные – отвечают за работу мышц;
  • сенсорные – обеспечивают чувствительность;
  • вегетативные – в компетенции которых находится работа внутренних органов.

Нервные корешки выходят из спинного мозга и образуют парные сплетения (шейные, плечевые, поясничные и крестцовые. Они распадаются на периферические нервы. Сенсорные нервы получают информацию от болевых, температурных, тактильных и рецепторов, фиксирующих давление. Моторные нейроны связаны с мышечными волокнами посредством нервно-мышечных синапсов. С помощью синапсов контактируют с внутренними органами и вегетативные нервы.

Типичный периферический нерв можно представить в виде электрического кабеля, который состоит из множества мелких проводов, объединённых одной оболочкой. Нервный импульс передаётся по оболочке нерва, а не по внутренней части. «Оболочка» состоит из вещества миелина, обеспечивающего передачу нервного импульса по аксону.

Патологический процесс может локализоваться на любом уровне – от клетки спинного мозга до нервно-мышечного синапса. Иногда проводимость нервного импульса блокируется за счёт повреждения нерва или его оболочки. Анализ ЭНМГ позволяет найти место повреждения и определить его характер.

Стандартная методика исследования моторных и сенсорных волокон периферических нервов врач проводит согласно алгоритму:

  • на кожу над поверхностью мышцы, иннервируемой изучаемым нервом, накладывает электроды;
  • подключает их к электронейромиографу;
  • фиксирует электрические потенциалы;
  • убирает электроды и протирает кожу спиртовым раствором антисептика.

Исследование и анализ состояния большинства крупных нервов не вызывает сложностей. Сплетения образуются из множества периферических нервов. Часто возникает необходимость исследовать каждый из них. ЭНМГ периферических нервов выполняют в Юсуповской больнице.

Для диагностики патологии нервно-мышечного синапса нейрофизиологи используют метод ритмической стимуляции или «декремент-тест». При выполнении декремент-теста нерв стимулируется 5 раз с частотой стимулов около 1 в секунду. Мышца сокращается 5 раз подряд за 5 секунд. Если синапс функционирует нормально, то все 5 раз импульс от нерва вызывает сокращение мышцы с одинаковой силой. При повреждении синапса мышца с каждым разом сокращается слабее.

Игольчатая ЭНМГ применяется для исследования мышц. Процедуру проводят при наличии следующих показаний:

  • подозрение на патологию двигательного нейрона спинного мозга;
  • заболевания мышц;
  • необходимость в определении степени поражения мышцы при неврологической патологии.

Врач вводит тонкую иглу-электрод в исследуемую мышцу, регистрирует электрическую активность мышцы в покое и при умеренном напряжении. Игольчатая ЭНМГ представляет собой более сложный с точки зрения интерпретации метод. Исследование часто занимает больше времени, чем поверхностная электронейромиография.

Показания для исследования функции мышц и нервов

ЭНМГ неврологи назначают при наличии следующих симптомов и синдромов:

  • непроизвольные сокращения, судороги, подёргивания мышц;
  • слабость в мышцах или их повышенная утомляемость;
  • снижение или изменение чувствительности на конечностях или лице;
  • атрофия мышц;
  • боли в руках и ногах, сопровождающиеся «прострелами»;
  • боли в шее или спине.

Врачи клиники неврологии применяют ЭНМГ для диагностики и мониторинга результативности проводимой терапии пациентам, страдающим боковым амиотрофическим склерозом, диабетической полинейропатией, миастеническим синдромом Ламберта-Итона. Исследование показано больным миастенией, миелодисплазией спинного мозга, миозитом и полимиозитом. Электронейромиография проводится в случае миопатии, неврита тройничного нерва, невропатии лицевого нерва (паралича Белла).

Показанием к ЭНМГ периферических нервов являются следующие заболевания:

  • мононевропатия;
  • плексопатия, плексит;
  • невропатия седалищного нерва;
  • полимиалгия, полиневрит;
  • радикулопатия при грыже межпозвонкового диска.

Результаты ЭНМГ неврологи используют в постановке диагноза и назначении терапии пациентам, страдающим синдромом Гийена-Барре, синдром запястного канала, карпальным и кубитальным синдромом. Исследование нервно-мышечной системы необходимо пациентам с синдромом Толоса-Ханта, спинальной мышечной атрофией, тригеминальной невралгией, туннельным и фибулярным синдромами. ЭНМГ проводится для выявления диабетической ангиопатии, поражения нервов при дефиците витаминов В, Е, С, гипотиреозе, гипертиреозе. Электронейромиография проводится больным системной красной волчанкой, васкулитом, рассеянным склерозом. Она позволяет установить причину хронической тазовой боли, установить диагноз «нейрогенный мочевой пузырь».

Подготовка к процедуре

Электронейромиография не требует особых приготовлений. Невролог предупреждает пациента, что за сутки до исследования необходимо прекратить принимать лекарственных препаратов, которые снижают тонус скелетных мускулов (миорелаксантов), блокируют ацетохинолин (антихолинергиков), влияют на процессы передачи нервных импульсов. В течение 3 дней, предшествующих процедуре, следует исключить приём алкоголя, а в день исследования не курить.

Для того чтобы предотвратить кровоподтёки в местах введения игольчатых электродов, врачи Юсуповской больницы назначают пациентам анализ свёртываемости крови. Если показатели не соответствуют норме, проводят корригирующую терапию. При наличии воспаления или гнойничков кожи в месте введения электродов назначают лечение основного заболевания, а затем делают ЭНМГ. Процедуру не выполняют беременным и кормящим грудью женщинам. Больным эпилепсией и пациентам, страдающим расстройствами психического здоровья, процедуру выполняют после стабилизации их состояния на фоне поддерживающей терапии. Не проводят ЭНМГ пациентам, у которых в организме присутствуют эндопротезы, металлические пластины, стимуляторы сердечной деятельности.

Читайте также:  Максимальное значение напряжения или силы тока

Этапы процедуры и анализ результатов

Перед началом исследования пациента информируют обо всех последующих манипуляциях и о том, что он может чувствовать во время процедуры. Получить точные результаты ЭНМГ врачам Юсуповской больницы позволяет точное соблюдение этапов исследования:

  • пациент принимает комфортное положение – сидя или лёжа;
  • врач накладывает накожные электроды на определённые точки;
  • при проведении игольчатой электронейромиографии вводит в мышцу стерильную разовую иглу-электрод;
  • нейрофизиолог направляет к электроду сигнал, который определяет скорость проведения импульса по нервным волокнам и результаты реакции мышц.

Во время обследования пациент может ощущать лёгкое покалывание в местах присоединения электродов. Процедура длится от 30 минут до 1 часа, в зависимости от объёма исследования. ЭНМГ позволяет оценить общее состояние функции периферических нервных волокон, выявить патологические участки нервной и мышечной систем, определить выраженность выявленных нарушений.

В Юсуповской больнице расшифровку результатов ЭНМГ проводят неврологи-нейрофизиологи, кандидаты медицинских наук. Они сверяют полученные показания с нормой, определяют степень отклонения и на основании этих данных ставят диагноз. При поражении периферического нерва скорость проведения импульсов значительно снижена как по чувствительному, так и по двигательному нерву. Амплитуда потенциала действия нерва и ответа иннервируемых мышц в этом случае уменьшена, растянута и имеет изменённую форму.

При наличии диффузного аксонального повреждения изменения скорости незначительны, но хорошо прослеживается снижение амплитуды М-ответа мышцы и потенциала действия нерва. У пациентов с туннельным синдромом и демиелинизирующими заболеваниями нервной системы изменяется скорость проведения возбуждения по нервам. Сегментарные поражения спинного мозга или его передних рогов диагностируют по снижению амплитуды М-ответа, вплоть до полного его исчезновения.

Для того чтобы сделать электронейромиографию периферических нервов, запишитесь на приём к неврологу-нейрофизиологу Юсуповской больницы по телефону. Врач не только проведёт обследование перед процедурой и при отсутствии противопоказаний выполнит исследование, но и проведёт анализ ЭНМГ, установит диагноз и назначит лечение.

Источник



Электротерапия – лечение заболеваний электрическим током или магнитными полями

Лечение электрическим током (электротерапия), магнитными или электромагнитными полями – одно из направлений физиотерапии, целебные свойства которого основаны на воздействии контролируемых заряженных частиц на организм. Уже достаточно давно известно, что т

Безболезненная, уникальная методика доктора Бобыря

Дешевле, чем мануальная терапия

Мягко, приятно, нас не боятся дети

Только с 20 по 30 апреля ! Записывайтесь!

Лечение электрическим током (электротерапия), магнитными или электромагнитными полями – одно из направлений физиотерапии, целебные свойства которого основаны на воздействии контролируемых заряженных частиц на организм. Уже достаточно давно известно, что т

Физическая способность положительных частиц двигаться в сторону отрицательного полюса и наоборот обеспечивает ускоренную циркуляцию кровяных потоков и лимфы, и, следовательно, оздоровление всего организма.

Еще задолго до начала исследования влияния электрических полей на организм человека и изобретения источников питания древнегреческие лекари использовали для исцеления нервных заболеваний или парезов электрических скатов или угрей. Первым методом физиотерапии с применением постоянного электрополя считается франклинизация (от имени американского ученого Б. Франклина). Она позволяла улучшить кровообращение, снизить артериальное давление, ускорить заживление ран, обезболить, существенно снизить проявление аллергических реакций.

Современная техника позволяет применять постоянные или переменные импульсные токи, различные частоты, разные магнитные поля и их сочетание для лечения:

  • Заболеваний центральной нервной системы (парезы и параличи, снижение чувствительности конечностей, замедление прохождения нервных импульсов, лечение межреберной невралгии, неврозов и пр.).
  • Лечение заболеваний опорно-двигательного аппарата (травматические повреждения позвоночника, мягких тканей и/или их последствий, лечение нарушений осанки, искривлений позвоночника, лечение межпозвонковых грыж, протрузий, остеохондроза, остеопороза, артритов и пр.).
  • Заболеваний и патологий сердечнососудистой системы (тромбозы, ревматоидные артриты, вегетососудистая дистония, ишемическая болезнь, гипертония, стенокардия, атеросклероз и др.).
  • лечение головных болей (мигреней, боли напряжения, кластерной и других хронических болевых синдромов головы).
  • Заболеваний внутренних органов (печени, почек, желудочно-кишечного тракта, мочеполовой системы).
  • Для сращивания эпителиальных тканей, лечения кожных высыпаний, гнойников, трофических язв и др.
  • В косметологии для омоложения кожи и удаления отечности.

Виды физиопроцедур, использующих электричество

Самыми распространенными видами физиопроцедур являются:

  • Гальванизация – постоянные токи низкого напряжения и небольшой силы. В зависимости от зоны применения (разные части тела) время процедуры и дозировки (напряжение) могут различаться. Активизирует кровоток в конечностях, восстанавливает поврежденные нервные волокна и мягкие ткани. Оказывает противовоспалительное влияние, обезболивает, расслабляет, снимает мышечные спазмы. Может использоваться для лечения воспалительных процессов желудочно-кишечного тракта, гипертонии, гипотонии, вегетососудистых патологий, заболеваний слуха и зрения. Широко применяется для лечения болезней позвоночника, спинного мозга и суставов.
  • Электрофорез – низкочастотные электрические разряды, усиливающие проникновение лекарственных препаратов через кожу к внутренним органам. Двойной лечебный эффект достигается активизацией кровообращения и глубоким впитыванием лекарственных средств.
  • Дарсонвализация – применение переменных импульсных токов высокой, ультразвуковой и сверхзвуковой частоты. Используется для купирования болевых синдромов и снятия спазмированности гладких мышц, повышает эластичность стенок сосудов (варикозное расширение вен, трофические язвы, долго незаживающие раны), рекомендуется при бессоннице, лечении мигрени, кожных высыпаниях, обморожениях, неврозах, гипертонии. Широко используется в косметологии, как местная процедура по подтяжке и омоложению кожи, снятию отечности и застойных явлений.
  • Электросон – воздействие электрических импульсов на различные зоны головного мозга. Обладает успокоительным, седативным, трофическим, противосудорожным эффектом. Может использоваться при бессоннице, неврастении, психических припадках, ишемических атаках, астматических приступах.
  • Диадинамотерапия – импульсное воздействие постоянными токами неизменной частоты (50 Гц и 100 Гц) чередованием периодов. Вызывает ощущение покалывания, легкого жжения, тепла или вибрации. Применяется для лечения травм и ушибов конечностей и позвоночника, артритов, лечения остеопороза, тромбофлебитов и прочих болезней.
  • Диатермия – использование токов высокой частоты, низкого напряжения большой силы. Возникает чувство сильного нагрева кожных покровов, затем глубокого прогрева внутренних тканей. Улучшает кровообращение, усиливает обменные процессы, поднимает иммунную сопротивляемость организма. Показана при хронических воспалительных процессах, болевых синдромах (тонзиллитах, ринитах и пр.).
  • Амплипульстерапия – применение модулированных токов синусоидального характера для лечения астмы и бронхитов, воспалений желудочно-кишечной системы, органов малого таза, связок и суставов.
  • Индуктотермия – использование высокочастотного магнитного поля с индуцированными вихревыми токами. Более равномерное распределение токов способствует равномерному прогреву внутренних органов, лучшей переносимости пациентом и обладает более стойким терапевтическим эффектом.

Приборы для электротерапии

Современные медтехники и специализированные фирмы предлагают огромный выбор приборов различных габаритов, характеристик и параметров для использования как в медицинских учреждениях, так и домашних условиях. Для электрофореза и гальванизации в физкабинетах и на дому может применяться прибор: «Поток 1», «ЭСМА 12.19 Лотус» или «ЭСМА 12.21У Галант». Сгенерировать импульсы различной частоты с широким диапазоном позволяет «Эскулап 2», «BTL 4000», «BTL 4000 Plus». Гораздо более дорогой и функциональный прибор с широким выбором программ, в том числе и электросон – «Радиус – 01ФТ».

Большой спектр физиопроцедур, магнитной и электротерапии для лечения болезней нервной системы, заболеваний позвоночника, искривления осанки, суставов, внутренних и ЛОР органов, предлагается в клинике доктора Бобыря в Москве или Зеленограде.

Противопоказания для проведения электротерапии

Несмотря на положительное влияние и эффективность электропроцедур для оздоровления организма человека, их применение обязательно должно контролироваться опытными врачами и использоваться с большой осторожностью. Категорически противопоказана электро- и магнитотерапия беременным женщинам и пациентам:

  • с опухолевыми образованиями различной этиологии;
  • перенесшим инсульт или инфаркт, страдающими пороками сердца;
  • с высокой температурой или лихорадкой;
  • имеющим гнойные воспаления внутренних органов и тканей;
  • с острыми кровотечениями и плохой свертываемостью крови;
  • с туберкулезом или другими вирусными и инфекционными заболеваниями;
  • с эпилепсией или подверженным судорожным состояниям;
  • с хроническими заболеваниями печени и почек;
  • страдающим болезнью Паркинсона или рассеянным склерозом;
  • с индивидуальной непереносимостью электрического тока или лекарственных средств, используемых для электропроцедур.

Автор: К.М.Н., академик РАМТН М.А. Бобырь

Источник