Меню

Номинальное напряжение красного светодиода

Как узнать, на какое напряжение рассчитан светодиод?

К основным параметрам светящихся полупроводниковых элементов (светодиодов) относят их номинальный ток и рабочее напряжение. Эти данные обычно приводятся в справочных листках или в техническом паспорте на изделие. Сложней обстоит дело, когда в руки попадает светодиод, по внешнему виду которого невозможно определить его принадлежность к определенной марке.

При этом какие-либо документы на него также отсутствуют.

Аналитический метод

Для определения рабочего напряжения неизвестного светодиода применяется аналитический подход, состоящий в оценке его свойств на основе физических характеристик.

Судить о принадлежности изделия к тому или иному типу можно по следующим параметрам:

  • Цвет излучения.
  • Тип и размеры корпуса.
  • Его форма.

Если корпус светодиода изготовлен из прозрачного компаунда – определить цвет его свечения очень просто. Для этого достаточно прозвонить его посредством обычного мультиметра.

Как узнать, на какое напряжение рассчитан светодиод?

Прикасаясь к ножкам светодиода щупами прибора в прямой полярности можно увидеть легкое свечение, по которому удается отнести его к определенному типу.

Дело в том, что цвет свечения указывает на принадлежность данного элемента к тому или иному классу излучающих структур. При этом рабочее напряжение у данной категории полупроводников имеет фиксированное значение (смотрите таблицу).

Как узнать, на какое напряжение рассчитан светодиод?

Зная характер свечения неизвестного светодиода, можно отыскать в этой таблице данные на полупроводники схожей конструкции и одного с ним цвета. Это поможет определиться с примерной величиной подаваемого на него напряжения. Аналитический метод позволяет получить лишь ориентировочную информацию, для подтверждения которой потребуются практические действия.

Экспериментальный метод

Для практического подтверждения информации, полученной о светодиоде теоретическим путем, потребуются следующие дополнительные элементы и приборы:

  • Резистор с номинальным сопротивлением примерно 590-620 Ом (можно и больше).
  • Блок питания с регулируемым выходным напряжением.
  • Мультиметр.

После того, как они подготовлены – нужно собрать схему, приведенную ниже.

Как узнать, на какое напряжение рассчитан светодиод?

Из нее видно, что резистор ограничивает предельный ток через светодиод, а мультиметром контролируется падение потенциала в прямом направлении.

Проверка в этом случае сводится к плавному повышению напряжения от нуля до определенного (порогового) значения, при котором светодиодный элемент начинает светиться. При дальнейшем увеличении испытательного напряжения яркость его свечения достигнет номинальной величины, а показания на дисплее мультиметра перестанут изменяться.

Это означает, что полупроводниковый p-n переход открылся полностью (произошло его насыщение), а все излишки напряжения от блока питания «упадут» на ограничивающем резисторе.

Как узнать, на какое напряжение рассчитан светодиод?

Показания, считанные с экрана измерительного прибора, и есть искомое номинальное напряжение для данного образца светодиода. В заключение проводимых экспериментов останется лишь сверить новые данные с полученными ранее теоретическими результатами.

Источник



Напряжение на светодиоде

В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:
белые 3-3,7 v
синие 2,5-3,7 v
зеленые 2,2-3,5 v
желтые 2,1-2,2 v
красные 1,6-2,03 v

В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:

стабилизатор напряжения для светодиодов

Напряжение красного светодиода самое низкое, а белого – самое высокое.

На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.

Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .

На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.

Читайте также:  Симптомы головной боли напряжения при шейном остеохондрозе

напряжение светодиодов в лампах

В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.

номинальное напряжение светодиодов

Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение. Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.

При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.

прямое напряжение светодиода

Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного. При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя. Допустимое обратное напряжение, как правило, находится в пределах 5 вольт. При питании переменным током надо использовать встречно-параллельное включение диодов.

Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.

Источник

Что такое светодиод, его принцип работы, виды и основные характеристики

Содержание

  1. Что такое светодиод и его принцип работы
  2. Устройство светодиода
  3. Какие виды светодиодов существуют и где они применяются
  4. Индикаторные светодиоды
  5. Осветительные светодиоды
  6. Основные характеристики светодиодов
  7. Цвет свечения
  8. Длина волны
  9. Потребляемый ток
  10. Мощность
  11. Видимый телесный угол
  12. Максимальная сила света
  13. Падение напряжения
  14. Как узнать, на какое напряжение рассчитан светодиод
  15. Как определить полярность светодиода

Светодиоды стремительно вытесняют лампы накаливания практически из всех областей, где их позиции казались непоколебимыми. Конкурентные преимущества полупроводниковых элементов оказались убедительными: низкая стоимость, долгий срок службы, а главное – более высокий КПД. Если у ламп он не превышал 5%, то некоторые производители светодиодов декларируют превращение в свет не менее 60% потребленной электроэнергии. Правдивость этих заявлений остается на совести маркетологов, но быстрое развитие потребительских свойств полупроводниковых элементов ни у кого сомнений не вызывает.

Что такое светодиод и его принцип работы

Светодиод (СД, LED) представляет собой обычный полупроводниковый диод, изготовленный на основе кристаллов:

  • арсенида галлия, фосфида индия или селенида цинка – для излучателей оптического диапазона;
  • нитрида галлия – для приборов ультрафиолетового участка;
  • сульфида свинца – для элементов, излучающих в инфракрасном диапазоне.

Выбор данных материалов обусловлен тем, что p-n переход диодов, изготовленных из них, при приложении прямого напряжения излучает свет. У обычных диодов из кремния или германия такое свойство выражено очень слабо – свечение практически отсутствует.

Излучение светодиода не связано со степенью нагрева полупроводникового элемента, его вызывает переход электронов с одного энергетического уровня на другой при рекомбинации носителей зарядов (электронов и дырок). Свет, испускаемый в результате, является монохроматическим.

Особенностью такого излучения является очень узкий спектр, и выделить нужный цвет светофильтрами затруднительно. А некоторые цвета свечения (белый, синий) при таком принципе изготовления недостижимы. Поэтому в настоящее время распространена технология, при которой внешняя поверхность светодиода покрывается люминофором, а его свечение инициируется излучением p-n перехода (которое может быть видимым или лежать в УФ-диапазоне).

Устройство светодиода

Светодиод изначально был устроен так же, как и обычный диод – p-n переход и два вывода. Только корпус из прозрачного компаунда или из металла с прозрачным окном для наблюдения свечения. Но в оболочку прибора научились встраивать дополнительные элементы. Например, резисторы – чтобы включать светодиод в цепь нужного напряжения (12 В, 220 В) без внешней обвязки. Или генератор с делителем для создания мигающих светоизлучающих элементов. Также корпус стали покрывать люминофором, который светится при зажигании p-n перехода – так удалось расширить возможности LED.

Читайте также:  Падение напряжения это отношение

Тенденция к переходу на безвыводные радиоэлементы не обошла и светодиоды. SMD-приборы стремительно захватывают рынок осветительной техники, имея преимущества в технологии производства. Такие элементы не имеют выводов. P-n переход монтируется на керамическом основании, заливается компаундом и покрывается люминофором. Напряжение подводится через контактные площадки.

В настоящее время светотехнические устройства стали оснащаться светодиодами, изготовленными по COB-технологии. Суть её в том, что на одной пластине монтируется несколько (от 2-3 до сотен) p-n переходов, соединяемых в матрицу. Сверху все помещается в единый корпус (или формируется модуль SMD) и покрывается люминофором. У такой технологии большие перспективы, но вряд ли она полностью вытеснит другие исполнения СД.

Какие виды светодиодов существуют и где они применяются

Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.

Индикаторные светодиоды

Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.

Осветительные светодиоды

Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.

В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).

Основные характеристики светодиодов

Как и любой диод, LED имеет общие, «диодные» характеристики. Предельные параметры, превышение которых ведет к выходу прибора из строя:

  • максимально допустимый прямой ток;
  • максимально допустимое прямое напряжение;
  • максимально допустимое обратное напряжение.

Остальные характеристики носят специфический «светодиодный» характер.

Цвет свечения

Цвет свечения – этот параметр характеризует СД оптического диапазона. У осветительных приборов в большинстве случаев белый с различной световой температурой. У индикаторных может быть любым из видимой цветовой гаммы.

Длина волны

Этот параметр в определенной степени дублирует предыдущий, но с двумя оговорками:

  • у приборов ИК и УФ диапазонов видимого цвета нет, поэтому для них эта характеристика единственная, характеризующая спектр излучения;
  • этот параметр больше применим для светодиодов с непосредственным излучением – элементы с люминофором излучают в широкой полосе, поэтому однозначно их свечение длиной волны не охарактеризовать (какая длина волны может быть у белого цвета?).

Поэтому длина излучаемой волны – достаточно информативная цифра.

Потребляемый ток

Потребляемый ток – это рабочий ток, при котором яркость излучения оптимальна. При его небольшом превышении не происходит скорого выхода прибора из строя – и в этом его отличие от максимально допустимого. Снижение его также нежелательно – интенсивность излучения упадет.

Мощность

Потребляемая мощность – здесь все просто. На постоянном токе – это просто произведение потребляемого тока на приложенное напряжение. Путаницу в это понятие вносят производители светотехники, указывая на упаковке крупными цифрами эквивалентную мощность – мощность лампы накаливания, световой поток которой равен потоку данного светильника.

Читайте также:  Стабилизаторы напряжения для дхо своими руками

Видимый телесный угол

Видимый телесный угол проще всего представить в виде конуса, исходящего из центра источника света. Данный параметр равен углу раскрыва этого конуса. Для индикаторных светодиодов он определяет, как срабатывание сигнализации будет видно со стороны. Для осветительных элементов от него зависит световой поток.

Максимальная сила света

Максимальная сила света в технических характеристиках прибора указывается в канделах. Но на практике удобнее оказалось оперировать понятием светового потока. Световой поток (в люменах) равен произведению силы света (в канделах) на видимый телесный угол. Два светодиода с равной силой света дают разное освещение при разном угле. Чем больше угол, тем больше световой поток. Так удобнее для расчета систем освещения.

Падение напряжения

Падение напряжения при прямом токе – это напряжение, которое падает на светодиоде в открытом состоянии. Зная его, можно рассчитать напряжение, потребное, например, для открывания последовательной цепочки светоизлучающих элементов.

Как узнать, на какое напряжение рассчитан светодиод

Самый простой способ узнать номинальное напряжение светодиода – обратиться к справочной литературе. Но если попался прибор неизвестного происхождения без маркировки, то его можно подключить к регулируемому источнику питания и плавно поднимать напряжение с нуля. При определенном напряжении светодиод ярко вспыхнет. Это и есть рабочее напряжение элемента. При такой проверке надо иметь в виду несколько нюансов:

  • испытуемый прибор может быть со встроенным резистором и рассчитан на достаточно высокое напряжение (до 220 В) – не каждый источник питания имеет такой диапазон регулировки;
  • излучение светодиода может лежать вне видимого участка спектра (УФ или ИК) – тогда момент зажигания визуально не определить (хотя свечение ИК-прибора в некоторых случаях можно увидеть через камеру смартфона);
  • подключать элемент к источнику постоянного напряжения надо со строгим соблюдением полярности, в противном случае легко вывести LED из строя обратным напряжением, превышающим возможности прибора.

Если нет уверенности в знании цоколевки элемента, лучше поднять напряжение до 3…3,5 В, если светодиод не зажегся — убрать напряжение, поменять подключение полюсов источника и повторить процедуру.

Как определить полярность светодиода

Для определения полярности выводов существует несколько методов.

  1. У безвыводных элементов (включая COB) полюсность напряжения питания обозначается прямо на корпусе – символами или приливами на оболочке.
  2. Так как светодиод имеет обычный p-n переход, его можно прозвонить мультиметром в режиме проверки диодов. Некоторые тестеры имеют измерительное напряжение, достаточное для зажигания светодиода. Тогда правильность подключения можно контролировать визуально по свечению элемента.
  3. Некоторые приборы производства CCCP в металлическом корпусе имели ключ (выступ) в районе катода.
  4. У выводных элементов вывод катода более длинный. По этому признаку определить цоколевку можно только у непаянных элементов. У бывших в употреблении LED выводы укорачиваются и изгибаются для монтажа произвольным образом.
  5. Наконец, узнать расположение анода и катода возможно тем же методом, что и для определения напряжения светодиода. Свечение будет возможно только при правильном включении элемента – катод к минусу источника, анод – к плюсу.

Развитие технологий не стоит на месте. Ещё несколько десятилетий назад светодиод был дорогой игрушкой для лабораторных опытов. Сейчас без него трудно представить жизнь. Что будет дальше – покажет время.

Источник