Меню

Номинальные напряжения генераторов приняты

Всё об энергетике

Электрические сети. Номинальные напряжения. Допустимые отклонения

Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты определяются комплексом документов: ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962 и ГОСТ 29322.

Ряд стандартных напряжений

Ряд стандартных напряжений установлен ГОСТ 23366 для постоянного и переменного тока промышленной частоты. Напряжение на выводах проектируемого оборудования должно соответствовать значениям этого ряда, за исключением некоторых случаев [3, п.2] . Ниже приведены стандартный ряд напряжений для потребителей электрической энергии [3, таб.1] . Основной ряд напряжений постоянного и переменного тока потребителей электрической представлен в таблице 1, вспомогательный ряд напряжений переменного тока — в таблице 2, а постоянного тока — в таблице 3.

Таблица 1 — Ряд напряжений постоянного и переменного тока потребителей электрической энергии

№ п/п U, В № п/п U, В
1 0,6 14 1140
2 1,2 15 3000
3 2,4 16 6000
4 6 17 10000
5 9 18 20000
6 12 19 35000
7 27 20 110000
8 40 21 220000
9 60 22 330000
10 110 23 500000
11 220 24 750000
12 380 25 1150000
13 660
Таблица 2 — Вспомогательный ряд напряжений переменного тока потребителей электрической энергии

№ п/п U, В
1 1,5
2 5
3 15
4 24
5 36
6 80
7 2000
8 3500
9 15000
10 25000
11 150000
Таблица 3 — Вспомогательный ряд напряжений постоянного тока потребителей электрической энергии

№ п/п U, В № п/п U, В № п/п U, В № п/п U, В
1 0,25 11 24 21 300 31 5000
2 0,4 12 30 22 400 32 8000
3 4,5 13 36 23 440 33 12000
4 1,5 14 48 24 600 34 25000
5 2 15 54 25 800 35 30000
6 3 16 80 26 1000 36 40000
7 4 17 100 27 1500 37 50000
8 5 18 150 28 2000 38 60000
9 15 19 200 29 2500 39 100000
10 20 20 250 30 4000 40 150000

Стандартный ряд напряжений для источников и преобразователей (например: генератор, трансформатор и т.п.) электрической энергии [3, таб.2] . Ряд напряжений для переменного тока приведен в таблице 4, для постоянного — в таблице 5.

Таблица 4 — Ряд напряжений переменного тока источников и преобразователей электрической энергии

№ п/п U, В № п/п U, В
1 6 15 10500
2 12 16 13800
3 28,5 17 15750
4 42 18 18000
5 62 19 20000
6 115 20 24000
7 120 21 27000
8 208 22 38500
9 230 23 121000
10 400 24 242000
11 690 25 347000
12 1200 26 525000
13 3150 27 787000
14 6300 28 1200000
Таблица 5 — Ряд напряжений постоянного тока источников и преобразователей электрической энергии

№ п/п U, В № п/п U, В
1 4,5 8 230
2 6 9 460
3 12 10 600
4 28,5 11 1200
5 48 12 3300
6 62 13 6600
7 115

При выборе напряжения следует отдавать предпочтение основному ряду.

Номинальное напряжение электрооборудования до 1000 В

Номинальное напряжение оборудования до 1000 В регламентировано стандартом ГОСТ 21128. Ряд номинальных напряжений приведён в таблице 6 [2, с.2] .

Таблица 6 — Номинальное напряжение источников, преобразователей, систем электроснабжения, сетей и приёмников до 1000 В

Род и вид тока Номинальное напряжение, В
источников и преобразователей систем электроснабжения, сетей и приёмников
Постоянный 6; 12; 28,5; 48; 62; 115; 230; 460 6; 12; 27; 48; 60; 110; 220(230); 440
Переменный:
однофазный 6; 12; 28,5; 42; 62; 115; 230 6; 12; 27; 40; 60; 110; 220(230)
трёхфазный 42; 62; 230; 400; 690 40; 60; 220(230); 380(400); 660(690); (1000)

Примечание:
В скобках указаны значения напряжения для электрических сетей согласно [6, таб.1]

Номинальное напряжение электрооборудования свыше 1000 В

Номинальное напряжение электрооборудования свыше 1000 В регламентировано ГОСТ 721. Ряд номинальных напряжений приведён в таблице 7 [1, с.3] .

Таблица 7 — Номинальные междуфазные напряжения для сетей напряжением свыше 1000 В

Сети и приёмники, кВ Генераторы и синхронные компенсаторы, кВ Трансформаторы и автотрансформаторы без РПН, кВ Трансформаторы и автотрансформаторы с РПН, кВ Наибольшее рабочее напряжение электрооборудования, кВ
Первичные обмотки Вторичные обмотки Первичные обмотки Вторичные обмотки
(6) (6,3) (6) и (6,3)* (6,3) и (6,6) (6) и (6,3)* (6,3) и (6,6) (7,2)
10 10,5 10 и 10,5* 10,5 и 11,0 10,0 и 10,5* 10,5 и 11,0 12,0
20,0 21,0 20,0 22,0 20,0 и 21,0* 22,0 24,0
35 35 38,5 35 и 36,75 38,5 40,5
110 121 110 и 115 115 и 121 126
(150)* (165) (158) (158) (172)
220 242 220 и 230 230 и 242 252
330 330 347 330 330 363
500 500 525 500 525
750 750 787 750 787
1150 1150 1200
Читайте также:  Как пользоваться индикатором напряжения двухполюсный до 1000в

Примечание:
1. Напряжения указанные в скобках не рекомендуются для вновь проектируемых сетей и электроустановок;
2. Напряжения, обозначенные «*» для трансформаторов и автотрансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электростанций или к выводам генератора;

В РФ исторически сложились две системы напряжений (кВ):

  • 110 — 330 — 750
  • 110 — 220 — 500 — 1150

Первая система напряжений (110 — 330 — 750) преобладает в западной части РФ, а вторая (110 — 220 — 500 — 150) — в её восточной части. В сетях центральной части РФ нет явного преобладания одной системы напряжений на другой, это своего рода переходная зона.

Номинальное напряжение тяговых систем (электрифицированного транспорта)

Номинальное напряжение для электрифицированного транспорта регламентировано ГОСТ 6962 и ГОСТ 29322. В таблице 8 приведен ряд номинальных напряжений для тяговых подстанций и токоприемников электрифицированного транспорта [4, стр.3][6, таб.2] .

Таблица 8 — Номинальные напряжения тяговых подстанций и токоприемников электрифицированного транспорта

Вид электрифицированного транспорта Напряжение, В
на шинах тяговой подстанции на токоприемнике электрифицированного транспорта
Железные дороги
Магистральные:
переменного тока
(27500) 25000
постоянного тока (3300) 3000
Промышленные:
подъездные и карьерные пути переменного тока
(27500) 25000
подъездные, карьерные и внутризаводские пути постоянного тока (3300)
(1650)
(600)
3000
1500
600 (550)
Городской электрифицированный транспорт
метрополитен (825) 750
трамвай, троллейбус (600) 600 (550)

Примечание:
В скобках указаны значения напряжения согласно [4, стр.3]

Допустимые отклонения напряжения

В реальности, при эксплуатации электрических сетей, источников, преобразователей и потребителей электрической энергии напряжения на них отличается от номинальных параметров. Это может быть связано с нарушением нормального режима работы оборудования, потерями электроэнергии при передаче и т.п. ГОСТ 29322-2014 частично регламентирует допустимые значения отклонения напряжения.

Для электрооборудования напряжением 100 ÷ 1000 В этот диапазон ограничивается значением ±10% [6, таб.1] . Иными словами для чайника рассчитанного на номинальное напряжение 230 В допускается работа при повышении напряжения вплоть до 252 В и его просадке до 198 В. Подробнее ниже, в таблице 9 [6, таб.А.1] .

Таблица 9 — Наибольшее и наименьшее напряжения источников и приёмников электрической энергии напряжением 100 ÷ 1000 В включительно

Системы Номинальная частота, Гц Напряжение, В
Номинальное напряжение источников и приёмников электроэнергии Наибольшее напряжение источников и приёмников электроэнергии Наименьшее напряжение источников электроэнергии Наименьшее напряжение приёмников электроэнергии
Трехфазные трех-, четырехпроводные системы 50 230 253 207 198
230/400 253/440 207/360 198/344
400/690 440/759 360/621 344/593
1000 1100 900 860
60 120/208 132/229 108/187 103/179
240 264 216 206
230/400 253/440 207/360 198/344
277/480 305/528 249/432 238/413
480 528 432 413
347/600 382/660 312/540 298/516
600 660 540 516
Однофазные трехпроводные системы 60 120/240 132/264 108/216 103/206

Допустимые отклонения напряжения для тяговых систем (электрифицированного транспорта) приведены в таблице 10 (источник — [6, таб.2] ).

Таблица 10 — Наибольшее и наименьшее напряжение тяговых систем

Вид системы Частота, Гц Напряжение, В
Номинальное Наибольшее Наименьшее
Системы постоянного тока 600* 720* 400*
750 900 (975) 500 (550)
1500 1800 (1950) 1000 (1100)
3000 3600 (3850) 2000 (2200)
Однофазные системы переменного тока 50 или 60 6250* 6900* 4750*
16 2/3 15000 17250 12000
50 или 60 25000 27500 (29000) 19000

Примечание:
1. Номинальные напряжения обозначенные «*» не рекомендуются для вновь проектируемых сетей и электроустановок;
2. В скобках указаны значения напряжения согласно [4, стр.3]

У электрооборудования напряжением 1 ÷ 35 кВ ГОСТ 29322-2014 устанавливает допустимое отклонение примерно ±10% [6, таб.3] .

Допустимые отклонения напряжения для электрооборудования 35 ÷ 230 кВ регламентированы ГОСТ 29322-2014 частично, а для электрооборудования напряжением свыше 230 кВ не регламентированы вовсе. Но это, вообще говоря, предмет отдельной статьи.

Историческая справка

Номинальные напряжения электрических сетей, источников и приёмников электрической энергии постоянного и переменного тока промышленной частоты до 1992 определялись комплексом документов ГОСТ 23366, ГОСТ 721, ГОСТ 21128, ГОСТ 6962. ГОСТ 23366 устанавливал ряд стандартных напряжений для электроустановок, ГОСТ 21128 регламентировал номинальное напряжение в электроустановках до 1000 В, для электроустановок свыше 1000 В — ГОСТ 721, а ГОСТ 6962 — номинальные напряжения для городского электрифицированного транспорта и железных дорог.

Читайте также:  Сделай сам преобразователь напряжения 12 220 вольт

В 1992 был издан ГОСТ 29322-92 «Стандартные напряжения» который по замыслу разработчиков должен был использоваться в комплексе с ГОСТ 721, ГОСТ 21128, ГОСТ 23366 и ГОСТ 6962 [5, с.1] . По своей сути ГОСТ 29322, являясь документом подготовленным методом прямого применения международного стандарта МЭК 38-83 [5, c.6] , предназначался для искоренения исторически и территориально сложившихся номинальных напряжений и их приведения к «европейскому» стандарту. В конечном итоге ГОСТ 29332 должен был заменить комплекс документов ГОСТ 721/21128/23366/6962.

Второе издание ГОСТ 29332 выпало на 2014 год. В этот раз ГОСТ 29332-2014 был составлен «методом перевода» стандарта IEC 60038:2009 и уже не опирался на ГОСТ 721/21128/23366/6962, хотя последние не утратили свою юридическую силу.

Источник



Большая Энциклопедия Нефти и Газа

Номинальное напряжение — генератор

Номинальное напряжение генераторов равно 135 и 270 в соответственно. [1]

Номинальное напряжение генератора 6300 в, охлаждение статора и ротора воздушное. Вращение генератора, если смотреть со стороны возбудителя, направлено по часовой стрелке. [3]

Номинальные напряжения генераторов , вторичных обмоток трансформаторов и приемников электроэнергии несколько отличаются друг от друга. Объясняется это тем, что для обеспечения нормальной работы приемников электроэнергии с учетом потерь напряжения в сети отклонения напряжения на них не должны превышать 5 % от номинального. [4]

Номинальное напряжение генераторов , работающих в схемах электрооборудования с номинальным напряжением 12 В, принято 14 В, а для 24-вольтовых схем — 28 В. Номинальный ток генератора — это максимальный ток нагрузки, который может отдать генератор при частоте вращения ротора 5000 об / мин и номинальном напряжении. Значения номинального напряжения и тока наносятся на крышке генератора. Номинальная мощность определяется как произведение номинального напряжения на номинальный ток. [6]

Номинальные напряжения генераторов и вторичных обмоток силовых трансформаторов примерно на 5 % выше номинальных напряжений электроприемников. Эта разность компенсирует потери напряжения в электрических сетях при передаче электроэнергии от генераторов или вторичных обмоток трансформаторов к электроприемникам. [7]

Номинальные напряжения генераторов приняты с учетом потерь напряжения при передаче электроэнергии на 5 % выше номинальных напряжений соответствующих сетей. Эти напряжения для генераторов мощностью 1100МВт и выше, которые соединяются обычно непосредственно с повышающими трансформаторами, в ГОСТ не указаны. [8]

Номинальное напряжение генераторов по условиям компенсации потери напряжения в сети принимается на 5 % больше номинального напряжения сети. [9]

Номинальные напряжения генераторов и вторичных обмоток силовых трансформаторов примерно на 5 % выше номинальных напряжений электроприемников. Эта разность компенсирует потери напряжения в электрических сетях при передаче электроэнергии от генераторов или вторичных обмоток трансформаторов до электроприемников. [10]

Номинальное напряжение генератора — это линейное ( междуфазное) напряжение обмотки статора в номинальном режиме ( см. также гл. [12]

Номинальное напряжение генератора — это линейное ( междуфазное) напряжение обмотки статора в номинальном режиме ( см. гл. [13]

Номинальные напряжения генераторов и вторичных обмоток силовых трансформаторов примерно на 5 % выше номинальных напряжений электроприемников. Эта разность компенсирует потери напряжения в электрических сетях при передаче электроэнергии от генераторов или вторичных обмоток трансформаторов до электроприемников. [14]

Номинальные напряжения генераторов и вторичных обмоток силовых трансформаторов примерно на 5 % выше номинальных напряжений электроприемников. Эта разность компенсирует потери напряжения в электрических сетях при передаче электроэнергии от генераторов или вторичных обмоток трансформаторов к электроприемникам. [15]

Источник

Номинальные параметры и условия работы генераторов

date image2015-10-22
views image4889

facebook icon vkontakte icon twitter icon odnoklasniki icon

Синхронные генераторы

Общие сведения

На современных электростанциях применяют синхронные генераторы трехфазного переменного тока. Первичными двигателями для них являются паровые турбины или гидротурбины. В первом случае это турбогенератор, а во втором – гидрогенератор.

Паровые турбины, являющиеся первичными двигателями, наиболее экономичны при высоких скоростях, но здесь конструкторов ограничивает строгая связь для синхронных генераторов:

где f – частота сети, р – число пар полюсов генератора. При принятой стандартной частоте 50 Гц и наименьшем возможном числе пар полюсов р = 1 наибольшее число оборотов определяется так:

Большинство турбогенераторов быстроходные, т.е. имеют максимальное число оборотов 3000. Если бы наши электроустановки были рассчитаны на частоту 60 Гц, то номинальное число оборотов соответственно увеличилось бы до 3600.

Генераторы небольших мощностей, соединенные с дизелями и другими поршневыми машинами, изготовляются на 750 – 1500 об/мин. Большие скорости вращения ротора отражаются на его конструкции – это цилиндрическая, цельнокованая поковка из специальной легированной стали. Вдоль поверхности ротора фрезеруют радиальные пазы, в которые укладывается обмотка возбуждения. Пазы закрываются клиньями, а в лобовой части обмотка укрепляется бандажными кольцами. Ротор турбогенератора гладкий, неявнополюсный, диаметром 1,1 – 1,2 м, длиной 6 – 6,5 м. Сердечник статора шихтуется из листов электротехнической стали в пакеты, между которыми образуются вентиляционные каналы. В пазы статора укладывается обмотка, закрепляемая деревянными или текстолитовыми клиньями, а лобовые части тщательно прикрепляются к конструктивным частям статора. Корпус статора изготовляется сварным и с торцов закрывается щитами с герметическими уплотнениями.

Читайте также:  Падение напряжения вторичной обмотке трансформатора

Для АЭС ввиду низких параметров пара целесообразно применять четырехполюсные генераторы с частотой вращения 1500 об/мин.

Рис. 2.1. Гидрогенератор подвесного исполнения (353 MBА, 200 об/мин):

1 – корпус статора; 2 – сердечник статора; 3 – обмотка статора; 4 – фундаментная плита; 5 – кольцо тормозное; 6 – полюс; 7 – обод ротора; 8 – остов ротора; Р – вал; 10 – тормоз-домкрат; 11 – крестовина нижняя; 12 – нижний направляющий подшипник; 13 – верхний направляющий подшипник; 14 – крестовина верхняя; 15 – сегмент подпятника; 16 – диск подпятника; 11 – втулка подпятника

Гидрогенераторы большой и средней мощности выполняются с вертикальным валом, в верхней части которого располагается генератор, а в нижней – гидротурбина. Мощность гидротурбины и ее скорость определяются величиной напора и расхода воды. Гидрогенераторы при больших мощностях изготовляются на 60–125 об/мин, при средних и малых – на 125 – 750 об/мин, т.е. они являются тихоходными машинами.

Вертикальные гидрогенераторы подвесного типа (рис. 2.1) имеют один подпятник 15, 16, 17, расположенный в верхней крестовине, к которой «подвешен» ротор генератора 7, 8и колесо турбины. Нижний 12 и верхний 13 направляющие подшипники обеспечивают вертикальное положение вала.

В гидрогенераторах зонтичного типа подпятник находится под ротором, в нижней крестовине, что позволяет снизить высоту всего агрегата, а следовательно, и здания ГЭС. Такое исполнение применяется для мощных агрегатов.

Статор гидрогенератора выполняется принципиально так же, как у турбогенератора. Ротор тихоходных гидроагрегатов имеет большое количество полюсов. Так, при числе оборотов 200

а при n=68,2 об/мин р=44пары, т.е. на ободе ротора надо разместить 88 полюсов. Это приводит к необходимости увеличить диаметр ротора до 16 – 22 м. Полюсы ротора с обмоткой возбуждения крепятся на ободе ротора 7. Кроме основной обмотки возбуждения, полюсы снабжены успокоительной обмоткой из медных стержней, уложенных в пазах полюса у периферии.

Находят применение капсульные гидрогенераторы с горизонтальным валом, заключенные в водонепроницаемую оболочку, которая обтекается потоком воды, приводящим в движение колесо гидротурбины.

Номинальные параметры и условия работы генераторов

Номинальный (нормальный) режим работы – это длительно допустимый режим с параметрами, указанными в паспорте генератора.

Номинальное напряжение – это междуфазное напряжение обмотки статора в номинальном режиме. Согласно ГОСТ 533–85 установлена следующая шкала стандартных напряжений: 3,15; 6,3; 10,5; (13,8); (15,75); (18); 20 и 24 кВ.

Допускается работа генератора с номинальной мощностью при отклонении напряжения ±5%. Длительно допустимое в эксплуатации напряжение не должно превышать 110% номинального, но при этом ток ротора не должен превышать номинального значения.

Номинальная активная мощность генератора, МВт,

полная мощность, MB А,

где Uном, Iном номинальные напряжение и ток; cosj – номинальный коэффициент мощности.

Согласно ГОСТ 533–85Е принята шкала номинальных мощностей турбогенераторов: 2,5; 4; 6; 12; 32; 63; 110; 160; 220; 320; 500; 800; 1000; 1200; 1600; 2000 МВт.

Шкала номинальных мощностей крупных гидрогенераторов нестандартизована.

Номинальный cos j принят равным: 0,8 – для генераторов до 100 МВт; 0,85 – для турбогенераторов до 500 МВт и гидрогенераторов до 300 МВт; 0,9 – для более мощных генераторов.

Номинальной мощности генератора соответствует определенная температура охлаждающего воздуха, водорода или воды и длительно допустимая температура нагрева обмоток статора и ротора, а также активной стали магнитопровода.

Допустимый нагрев частей генератора зависит от теплостойкости применяемых изоляционных материалов (табл. 2.1).

Допустимые температуры нагрева турбогенераторов, °С

Часть генератора Класс изоляции
В F Н
Обмотка статора и активная сталь
Обмотка ротора

В настоящее время ОАО «Электросила» внедряет изоляцию «Монолит-2» для обмоток статора с изолировкой стержней обмотки сухими стеклослюдонитовыми лентами с последующей вакуумно-нагнетательной пропиткой и запечкой обмотки, уложенной в пазы статора. Такая изоляция позволяет увеличить единичную мощность турбогенераторов и их технические характеристики.

Изолирующие материалы в процессе эксплуатации подвергаются старению итеряют свои изолирующие свойства, поэтому систематические перегрузки генераторов недопустимы.Однако в аварийных условиях допускается кратковременная перегрузка по току статора и ротора [1.13], приведенная в табл. 2.2 и 2.3.

Источник