Меню

Область применения мостов переменного тока

Измерительные мосты переменного токa

ТЕРМОЭЛЕКТРИЧЕСКИЕ ПРИБОРЫ.

Теплота, выделяемая током в нагревателе, не зависит от частоты, поэтому термоэлектрическими приборами можно пользоваться и на постоянном токе и на переменном, включая радиочастоты.

При малых значениях измеряемых токов (150—300 мА) применяют вакуумные термопреобразователи.

Современные термопреобразователи используют как на постоянном токе, так и на частотах вплоть до 100 МГц. но с увеличением частоты вследствие поверхностного эффекта повышается сопротивление нагревателя. Кроме того, при очень высоких частотах часть измеряемого тока ответвляется через собственные емкости, минуя нагреватель.

Билет 87 Магнитоэлектрический изм механизм

Магнитоэлектрическая система. В этой системе измерительный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, равномерно за счет особой конфигурации магнитопровода. Под воздействием тока рамка вращается в магнитном поле, угол пово­рота ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:

где удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W—удельный противодействующий момент, созда­ваемый специальной пружиной,

1 – рамка с измеряемым током и стрелкой;2 – неподвижный сердечник;

3 – полюсные наконечники;4 – возвратная пружина

На основе магнитоэлектрического механизма создаются вольтметры, амперметры, миллиамперметры и другие измерительные приборы, и их структурное построение главным образом определяется измерительной схемой. Измерительные приборы магнитоэлектрической системы имеют достаточно высокую точность, сравнительно малое потребление энергии из измерительной цепи, высокую чувствительность, но работают лишь на постоянном токе.

Для расширения пределов измерения токов амперметрами и напряжений вольтметрами применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно индикаторам в схемы этих приборов.

Основное использование переносные, лабораторные, многопредельные амперметры и вольтметры постоянного тока.Класс точности 0,05 … 0,5,потребляемая мощность Рсоб 10-5 … 10-4 Вт

Билет 88. Маг Эл Логометр

Логометры — приборы магнитоэлектрической, электромагнитной и электродинамической систем со сдвоенными измерительными механизмами. В них в отличие от других приборов не используется сила упругости противодействующих пружин. Их поэтому называют также приборами без противодействующего момента.Условные обозначения этих приборов приведены на рисунке 12.13.

Магнитоэлектрические логометры применяют в приборах для измерения больших сопротивлений.

Стрелка указателя логометра, не испытывая усилия противодействующей пружины, которая в обычных приборах возвращает ее на нулевое деление, обычно может занимать любое положение относительно шкалы при отключенном приборе.При включении прибора токи обтекают катушки, создается вращающий момент и стрелка отклоняется.

Магнитоэлектрический логометр — это прибор, измеряющий отношение двух электрических величин: токов или напряжений, а не абсолютные значения величин. Принцип действия логометра основан на взаимодействии поля постоянного магнита и магнитных полей, вызванных токами, протекающими в двух рамках подвижной системы.

Принцип действия Л. основан на том, что направленные встречно вращающие моменты, возникающие вследствие воздействия на подвижную часть Л. величин, входящих в измеряемое отношение, уравновешиваются при отклонении подвижной части на некоторый угол. Например, подвижную часть магнитоэлектрического Л. образуют две скрепленные под углом рамки, токи к которым подводятся через безмоментные спирали (рис.,а). Находясь в поле постоянного магнита, рамки стремятся повернуться в направлении действия большего момента, и подвижная часть отклоняется до тех пор, пока моменты не уравновесятся. Л. широко применяются в различных схемах для измерения электрических величин: ёмкости, индуктивности, сопротивления. Например, при использовании Л. в Омметре(рис., б) угол α, на который отклоняется подвижная часть Л., зависит только от отношения сил токов I1 и I2,

т. e. при постоянных r и r1 отклонение подвижной части пропорционально измеряемому сопротивлению; шкала Л. градуируется непосредственно в омах/

Устройство магнитоэлектрического логометра (а) и схема омметра с магнитоэлектрическим логометром (б): M1, M2 — вращающие моменты; l1, I2 — токи в цепях омметра; U — источник питания; r — сопротивление рамок логометра; r1 — омическое сопротивление; rx — измеряемое сопротивление; 1, 2 — рамки логометра; 3 — сердечник; 4 — постоянный магнит.

Билет 89-91 МОСТОВЫЕ СХЕМЫ

Общие сведения. Мостовые схемы широко применяются в электроизмерительной технике. Они дают возможность измерять сопротивление, индуктивность, емкость и угол потерь конденсаторов, взаимную индуктивность и частоту. Мостовые схемы широко используются также для измерения неэлектрических величин электрическими методами. Например температуры..

Мост содержит резисторы, включенные четырехугольником. Каждый резистор называется плечом (или ветвью) моста. В диагональ, называемую выходной, включен нуль-индикатор, например гальванометр; выводы другой диагонали подключены к источнику тока.

Если произведения сопротивлений резисторов противолежащих плеч равны, мост уравновешен, ток в выходной диагонали равен нулю. Из этого следует возможность включения измеряемого сопротивления в любое плечо моста и определение его величины через сопротивления трех других плеч.

В мостах переменного тока сопротивления плеч моста имеют комплексный характер. Для уравновешенного состояния моста необходимо равенство произведений комплексных сопротивлений противолежащих плеч. Поэтому для равновесия мостов переменного тока необходимо регулировать два параметра схемы, чтобы выполнить оба условия равновесия моста:

1. Равенство произведений комплексных сопротивлений противолежащих плеч;

2. Равенство сумм углов сдвига токов относительно напряжений в противолежащих плечах.

1) Z1Z4 = Z2Z3 z1z4expj(1+4)=z2z3expj(2+3)  2) 1+ 4 = 2+ 3 .

Эти условия равносильны и обязательны для равновесия моста.

Второе условие указывает, при каком расположении комплексных сопротивлений можно уравновесить схему. Если в двух смежных плечах включены чисто активные сопротивления, то в двух других смежных плечах могут быть включены индуктивности или емкости.

Чувствительность мостов — это отношение приращения выходного сигнала к приращению входной величины. Выходным сигналом мостовой схемы может быть ток, напряжение или мощность. Входной величиной является измеряемая величина (сопротивление, индуктивность и др.), включенная в плечо моста. Доказано, что чувствительность моста максимальна, когда сопротивления всех плеч равны между собой и равны сопротивлению гальванометра.

Мосты для измерения сопротивления на постоянном токе

Одинарными мостами постоянного тока называют четырехплечие мосты с питанием от источника постоянного тока. Они используются для измерения сопротивления на постоянном токе. В качестве нуль индикаторов в мостах постоянного тока применяются магнитоэлектрические гальванометры.

Процесс измерения заключается в том, что в одно из плеч моста включают измеряемое сопротивление и, изменяя сопротивление другого плеча, добиваются отсутствия тока в цепи гальванометра. Из условия равновесия определяется значение сопротивления.

При измерении малых сопротивлений (меньших 10 Ом) на результат измерения существенное влияние оказывает сопротивление соединительных проводов, включенных последовательно с измеряемым сопротивлением.

Для измерения сопротивлений ниже 1 Ом используетсядвойной мост Томсона, схема которого показана на рис. 4.4.

Сопротивления RXи RH имеют по четыре выходные клеммы, а RР подбирается таким, чтобы ток через RН давал падение напряжения на нем минимум 0,5 В. При равновесии сопротивление RX определяется выражением

На практике значения R1, R2, R3 и R4 выбирают такими, чтобы при этом выражение сводится к виду

Чтобы проверить выполнения условия , мост уравновешивается, а затем проводник R убирается, что не должно влиять на равновесие моста. Сопротивление R стремятся сделать как можно меньшим

Сопротивления R1, R2, R3 и R4 должны быть меньше 10 Ом каждое, чтобы влияние сопротивлений соединительных проводов и контактов r1, r2, r3, r4 было малым. Кроме того, оно может быть скомпенсировано путем шунтирования R3 или R4 сопротивлением большего значения и уравновешиванием моста без сопротивления R.

На практике сопротивление R2 изменяется путем подключения добавочных сопротивлений, а R1 – путем замены отводов, R4 и R2 регулируются одной ручкой, а R1 и R3 — другой, так что их отношения поддерживаются постоянными в соответствии с (4.5). Чтобы исключить влияние термоЭДС, полярность источника питания меняется.

Двойной мост имеет погрешность менее 0,5% для сопротивлений в диапазоне 10 мкОм – 1 Ом. Он также может использоваться для измерений сопротивлений резисторов с двумя зажимами, так как R1,R2, R3, R4 образуют обычный мост Уитстона; погрешность при этом менее 0,02%.

С целью расширения пределов измерения в промышленных приборах двойные мосты совмещаются с одинарными.Погрешность моста зависит от пределов измерения.

Измерительные мосты переменного токa

Читайте также:  Расчет цепей однофазного переменного тока символическим методом

Мосты переменного тока предназначены для измерения емкости и угла потерь конденсаторов, индуктивности и добротности катушек, взаимной индуктивности.Схемы мостов могут иметь различные варианты включения в плечи измеряемых и образцовых резисторов, катушек индуктивностей и конденсаторов.

Мостовые измерительные схемы относят к уравновешенным цепям, в которых ток или напряжение на определенных участках цепи приводится к нулевому значению путем изменения соотношения между значениями измеряемой и образцовой величин.Приведение к нулевому значению называют уравновешиванием, или балансировкой моста.

Мостовые схемы широко применяют для измерения параметров индуктивностей , емкостей и сопротивлений . Наибольшее распространение имеет схема четырехплечего моста, сопротивления которого в общем случае носят комплексный характер:

Условие равновесия моста переменного тока будет определяться двумя уравнениями:

(для амплитуд); (для фаз).

Обычно в мостах переменного тока два плеча состоят из активных сопротивлений, а два других плеча являются комплексными сопротивлениями: Плечо моста с комплексным сопротивлением известно и называется образцовым, а неизвестно.

Для выполнения условий равновесия необходимо наличие в плечах моста двух элементов с регулируемыми параметрами: активного реактивного элемента. Поскольку изготовление высокодобротных образцовых катушек вызывает определенные трудности, то в качестве образцовой меры в мостах переменного тока применяется конденсатор.

Измерение ёмкости осуществляют схемой с отношением балансных плеч: Z1 и Z2 – активные балансные, Z3=Z0 – образцовое, а Z4=Zk– измеряемое. А индуктивность измеряют схемой с произведением балансных плеч Z1, Z3 – активные балансные, Z2=Z0 – образцовое, а Z4=Zk– измеряемое.

Билет 92. Потенциометры постоянного тока

Источник

Мосты переменного тока

date image2018-01-08
views image1255

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для измерения параметров элементов цепей методом сравнения применяют мосты. В сравнении измеряемой величины (сопротивление, индуктивность, емкость) с образцовой меры при помощи моста измеряют автоматически или вручную на переменном или постоянном токе. Мостовые схемы обладают высокой точностью, широким диапазоном измеряемых значений параметров элементов. На основе мостовых методов строят приборы, предназначенные для измерения какой-либо одной величины, так и универсальные. Существует несколько элементов мостовых схем RLC: четырехплечие, уравновешенные, неуравновешенные и процентные. В зависимости от вида мостовых схем количество входящих в ее состав ветвей (плеч) мосты можно разделить на: четырехплечие, многоплечие, Т-образные и т.д. наиболее распространенные четырехплечие (одинарные) мосты. Т-образные мосты обычно применят для измерения параметров электрических цепей на высоких и сверхвысоких частотах. В состав каждой мостовой схемы входят измеряемые параметры и переменные образцовые меры. В зависимости от соотношения между параметрами мостовой схемы может быть, а может и отсутствовать напряжение (ток), в результате чего мосты делятся на неуравновешенные (есть ток) и уравновешенные (нет тока).

Принцип действия четырехплечего (одинарного) моста.

Одинарный мост имеет 4 плеча (Z1,Z2,Z3,Z4), источник питания (U), ноль-индикатор. Если сопротивления таковы что точки А и В имеют равные потенциалы, то через ноль-индикатор отсутствует; в этом случае говорят что достигается равновесие моста. Z1*Z4=Z2*Z3 (1). Если Z4 неизвестное сопротивление, то его значение можно определить из условия равновесия Z4=Z2*Z3/Z1 (2). Отсюда следует, что равновесие не зависит от сопротивления ноль-индикатора, т.к. ток не течет через него, а также от напряжения и сопротивления источника питания. Таким образом, высокостабильный источник питания не требуется. Z3 – плечо сравнения, а отношение Z1/Z2 определяет диапазон изменения измеряемой величины. Чтобы охватить широкий диапазон известных импедансов мосты снабжают переключателем, которые изменяют сопротивление Z1 и Z2 в 10 раз. Сопротивление моста в общем случае имеет комплексный характер: Z1=Z1*e jf1 , Z2=Z2*e jf2 , Z3=Z3*e jf3 , Z4=Z4*e jf4 .

Zj – модули комплексных сопротивлений

fi – соответствующая фаза

Когда равновесие моста определяется выражениями 1 и 3 тогда мост переменного тока нуждается в регулировке двух независимых параметров, чтобы обеспечить равновесие модулей и фазовых углов.

Чувствительность моста очень важный параметр и определяется, как способность менять на малые отклонения. Оно выражается как изменение тока через ноль-индикатор при единичном отклонении моста регулируемого в положении равновесия. При максимальной чувствительности моста если Z2=Z4, то и Z1=Z3. на практике это условие выполняется редко, т.к. Z3 должно быть достаточно большим чтобы обеспечить требуемую точность. Наибольшая чувствительность достигается, когда ноль-индикатор включен между контактами двух плеч с максимальным и минимальным импедансом. Чувствительность моста также пропорциональна напряжению источника питания. В качестве ноль-индикатора в мосте постоянного тока можно использовать магнитно-электрический прибор. Простейшим индикатором для моста переменного тока является головной телефон; на частотах, на которых чувствительность уха низка применяют радиоприемник или измерительные усилители. Для достижения высокой чувствительности и избирательности требуется генератор непрерывного сигнала и гетеродинный индикатор. Для уравновешивания моста используют также подключенный к осциллографу усилитель. Напряжение источника питания не должно превышать максимально допустимого напряжения и не выделять избыточного тепла. Чем ниже напряжение, тем ниже чувствительность моста и система более восприимчива к высокочастотным помехам. Для мостов переменного тока на низкой частоте можно использовать сетевое напряжение 50 Гц. Выпускаемые промышленные мосты обычно содержат источники питания с различными частотами, т.к. чувствительность мостов с реактивными сопротивлениями пропорционально частоте и эта зависимость может быть крутой на одном конце сопротивления и пологой на другом. Максимальная частота источника питания должна быть ниже собственной резонансной частоты измеряемых элементов, чтобы уменьшить ошибки измерений. Если точка равновесия моста чувствительна к частоте, то источник питания должен иметь стабильную частоту и не генерировать гармоники, т.к. уравновешенные на одной частоте не остаются в равновесии на гармонике.

Мост Уитстона.

Наибольшее распространение получил резистивный мост называемый мостом Уитстона.

Rx – неизвестное сопротивление

R1, R2, R3 – регулируются до тех пор пока ток через ноль-индикатор не станет равным нулю. В таком положении Rх определяется: Rх=R3R2/R1 (4)

R1 и R2 – неизвестные фиксированные сопротивления в диапазоне от 1Ом до 1кОм, при этом R2/R1 составляет от 10 -3 до 10 3 .

R3 регулируется шагом 1 или 1.1Ом вплоть до 10кОм, чтобы уравновесить мост. При измерении, R1 и R2 выбираются такими, чтобы чувствительность моста была максимальной. R4 сначала включают в цепь для защиты ноль-индикатора, но может быть и закорочено для повышения чувствительности, когда равновесие достигнуто.

Мост Уитстона используют для измерения сопротивлений резистора с двумя зажимами от 1Ом до 100 МОм. Нижний предел измерения сопротивлений зависит от импеданса соединений проводов и контактов. Для измерения сопротивлений ниже 1ом используют второй мост Уитстона. При измерении до 100 Ом мост дает ошибку (5-100)10 -6 . В мосте используются резисторы из манганина, который имеет низкий температурный коэффициент сопротивления, высокую стабильность, и низкий термоЭДС. При проведении измерений с мотом Уитстона обычно берут 2 отсчета при разных полярностях батареи, а затем усредняют результат, исключая эффект термоЭДС. Пиковый ток через резисторы должен поддерживаться на низком уровне, чтобы избежать изменения сопротивления из-за их нагрева током. Чтобы использовать мост Уитстона для измерений выше 100 МОм требуется высокое напряжение, тогда токи утечки на землю могут приводить к заметным погрешностям. Их можно уменьшить и расширить рабочий диапазон моста до 10 12 Ом, если использовать высокочувствительный индикатор и методы защиты (экранирование, заземление экрана и другое).

Мосты для измерения индуктивности.

Для измерения индуктивности в этих мостах используется метод сравнения с известной индуктивностью. Для питания используется переменный ток, при этом две составляющие моста должны быть регулируемые, чтобы обеспечить уравновешивание, как по модулю, так и по фазе. Предполагается, что неизвестная катушка имеет собственную индуктивность Lx, взаимную Nx и сопротивление Rx.

Источник

Мосты переменного тока

Метод измерительного моста переменного тока находит широкое применение для измерения омического сопротивления, емкости, танген­са угла потерь, индуктивности, добротности.

В отличие от мостов постоянного тока здесь одну диагональ моста включен источник переменного напряжения (генератор низкой частоты), в другую — нулевой индикатор переменного напря­жения, плечи моста — двухполюсники с полным сопротивлением Z (рис.10.2).

Рисунок 10.2 – Схема моста переменного тока

Читайте также:  Свердловский завод трансформатор тока дилер

Равновесие моста достигается при условии ра­венства произведений комплексных сопротивлений противоположных плеч:

В показательной форме равенство будет иметь вид

где — модули полных сопротивлений плеч; φ1 – φ4 – фазовые сдвиги между током и напряжением в соответ­ствующих плечах.

Равенство (10.4) представим в виде двух равенств:

-равенство произведений модулей комплексных сопротивлений противолежащих плеч:

— равенство сумм аргументов комплексных сопротивлений противоположных плеч:

Равенства (10.5) и (10.6) определяют условия равновесия моста. Они показывают, что мост переменного тока нужно уравновешивать ре­гулировкой активной и реактивной составляющих плеч, т.е. равновесие осуществляется по модулям и фазам. При этом уравнения (10.5) и (10.6) равносильны и оба обязательны для достижения равновесия мо­ста. Условие (10.6) указывает, при каком расположении плеч в зависи­мости от их характера можно уравновесить схему. Если смежные плечи, например третье и четвертое (рис.10.2), имеют чисто активные со­противления R3 и R4, т.е. φ3 = φ4 = 0, то два других смежных плеча могут иметь или индуктивный, или емкостный характер. Если противо­положные плечи чисто активные, то одно из двух других сопротивлений должно быть индуктивным, а другое – емкостным.

При алгебраической форме представления комплексного сопроти­вления

где R – вещественная часть, представляющая активную составляющую; X – мнимая часть, представляющая реактивную составляющую.

В алгебраической форме равенство (10.3) примет вид

Это равенство обеспечивается при одновременном выполнении равенства активных и реактивных частей, т.е.

Рассмотрим мост для измерения емкости и угла потерь конденсаторов (рис.10.3).

Рисунок 10.3 – Схема моста для измерения емкости

Два его плеча составлены из магазинов сопротивлений R2 и R4. Третье плечо образовано последовательно соединенными образцовыми конденсатором Со и переменным резистором с малым сопротивлением Ro. В четвертое плечо включен измеряемый конденсатор Сх, сопротивление потерь в котором Rx.

Полные сопротивления плеч моста равны:

Подставив в формулу равновесия моста (10.3) эти значения, получим

Приравняв отдельно вещественные и мнимые части, получим

Из анализа векторной диаграммы цепи RxCx следует, что угол δх, дополняющий до 90 о φх , определяется как

Уравновешивание моста переменного тока для измерения индуктивности рассмотрим на примере схемы, представленной на (рис.10.4).

Рисунок 10.4 – Схема моста для измерения индуктивности

Здесь для измерения индуктивности Lx используют образцовый конденсатор Со, включенный в плечо, противоположное плечу с измеряемой индуктивностью. Параллельно с конденсатором Со включен резистор Ro. В остальные плечи включены магазины сопротивлений R2 и R3.

Полные сопротивления плеч равны

Равновесие моста согласно (10.2) определяется как

Отсюда следует, что

На основании изложенного можно заключить, что для мостов, у которых два плеча содержат только активные сопротивления, а два других – реактивные (рис.10.3 и 10.4), справедливы следующие утверждения:

— если активные сопротивления находятся в смежных плечах (рис.10.3) R2 и R4 и φ2 = φ4 = 0, то два других плеча должны содержать сопротивления одного характера (индуктивного или емкостного), что обеспечивает выполнение условия φ1 = φ3;

— если активные сопротивления расположены в противоположных плечах (рис.10.4) R2 и R3 и φ2 = φ3 = 0, то характер сопротивлений двух других плеч должен быть противоположным, что обеспечивает выполнение условия φ1 = -φ4.

Погрешности измерений параметров цепей с использованием рассмотренных мостов составляет сотые доли % от измеряемой величины. Они обусловлены следующими причинами:

— погрешностью значений образцовых элементов моста;

— влиянием паразитных связей между элементами схемы;

— влиянием нестабильностью параметров элементов схемы;

— нестабильностью амплитуды и частоты источника переменного напряжения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Область применения мостов переменного тока

Как мы видели из схем постоянного тока, схемы, известные как мостовые могут быть очень полезны при изменении сопротивлений. Это так же верно и для схем переменного тока, и те же самые принципы могут быть применены для точных измерений неизвестных импедансов.

Напомним, что мостовые схемы работают как пара двухкомпонентных делителей напряжения подсоединённых параллельно к источнику напряжения, индикатор нулевого сигнала включён в диагональ моста для определения «баланса» при нулевом сигнале (Рисунок внизу)

Сбалансированный мост показывает «ноль», или минимальное значение, на индикаторе.

Любой из четырёх резисторов на верхнем рисунке может быть резистором с неизвестным сопротивлением, и его значение может быть определено из пропорции с другими тремя резисторами, которые «калиброваны» или их сопротивления известны с высокой точностью. Когда мост находится в условиях баланса (индикатор показывает нулевой сигнал), отношение определяется как:

Условия баланса.

Одним из преимуществ использования мостовой схемы для измерения сопротивлений является то, что напряжение источника питания не влияет на измерения. Практически, чем выше напряжение питания, тем легче обнаружить дисбаланс между четыремя резисторами с помощью индикатора нулевого сигнала, и таким образом повышается чувствительность схемы. Большее напряжение питания ведёт к увеличению точности измерений. Однако из-за уменьшения или увеличения напряжения питания не вносится фундаментальных ошибок в отличии от других схем измерения сопротивлений.

Импедансные мосты работают так же, только уравнение баланса определяется комплексными числами, и амплитуда, и фаза сигналов на диагонали моста должны быть равные, что бы детектор показал «нуль». Детектор нуля, конечно, должен быть устройством, способным обнаруживать очень слабый сигнал переменного тока. Для этого часто используют осциллограф, хотя здесь мог бы использоваться очень чувствительный электромеханический прибор и даже наушники, если частота сигнала лежит в звуковом диапазоне.

Один из способов увеличить эффективность наушников как детектора нуля — подсоединить их к источнику сигнала через согласующий трансформатор. Обычно наушники имеют низкое сопротивление (8 Ω), требующее существенного тока для работы, и такой понижающий трансформатор помогает «согласовать» слаботочный сигнал с сопротивлением наушников. Для этих целей хорошо подходит выходной трансформатор от аудио аппаратуры. (Рисунок внизу)

Детектор нуля для мостов переменного тока на основе наушников.
«Современные» низкоомные головные телефоны требуют согласующий трансформатор при использовании их в качестве чувствительного детектора нулевого сигнала.

Используя пару головных телефонов, полностью закрывающих уши, я мог обнаруживать сигналы с током менее 0.1 µA с этим простым детектором. Похожие результаты были получены с использованием двух понижающих трансформаторов: небольшого силового трансформатора (120В/6В), и аудио выходного трансформатора (с отношением сопротивлений обмоток 1000:8 Ом). С кнопочным выключателем для прерывания тока эта схема пригодна для обнаружения сигналов в диапазоне от постоянного тока до частот более 2 мГц: даже если частота гораздо больше или меньше звукового диапазона, в наушниках будут слышны щелчки каждый раз при нажатии или отпускании кнопки.

Соединённая в резистивный мост, полная схема изображена на нижнем рисунок.

Мост переменного тока с чувствительным детектором нуля.

Слушая сигнал в наушниках в то время как один или более резисторов в «плечах» моста отрегулированы, ожидают наступления баланса тогда, когда в наушниках перестанут быть слышны щелчки (или звуковой сигнал, если частота источника сигнала лежит в звуковом диапазоне).

Когда описывают общие мосты переменного тока, где импеданс, а не только сопротивления должны иметь правильные соотношения для выполнения условий баланса, иногда бывает полезно рисовать соответствующие узлы моста в виде квадратов, каждый из которых имеет определённый импеданс: (Рисунок внизу)

Обобщённый мост переменного тока: Z = общий комплексный импеданс.

Для этого обобщённого моста переменного тока выполнение условий баланса должно происходить в том случае, когда отношение импедансов каждой ветви равно:

Снова должно быть подчёркнуто, что импеданс в этом уравнении должен быть комплексный, рассчитанный для как для амплитуды, так и для фазы. Недостаточно, что бы мост был сбалансирован только по амплитуде сигнала; без балансировки фазы на выводах детектора нуля будет присутствовать напряжение, и мост не будет сбалансирован.

Мостовые схемы могут быть сконструированы для измерений почти любых параметров — ёмкости, индуктивности, сопротивления и даже добротности. Как и всегда в мостовых измерительных схемах, неизвестное значение всегда «балансируется» по известному стандарту, полученному из высококачественного, калиброванного компонента, значение с которого считывается при индикации на детекторе нуля баланса. В зависимости от того, как устроен мост, значение неизвестного компонента может быть получено с калиброванного элемента как напрямую, так и рассчитано по формуле.

Читайте также:  Физика электричество ток формулы

Несколько простых мостовых схем показано ниже, одна для измерения индуктивности (Рисунок внизу), другая — для измерения ёмкости (Рисунок внизу):

Симметричный мост измеряет неизвестную индуктивность путём сравнения её со стандартной.

Симметричный мост измеряет неизвестную ёмкость путём сравнения её со стандартной.

Простые «симметричные» мосты, такие как эти названы так потому что они выглядят симметрично (зеркальная симметрия) слева направо. Две мостовые схемы, показанные вверху балансируются путём регулирования калиброванных реактивных элементов (Ls или Cs). Они немного упрощены по сравнению с их реальными схемами, например, на практике мост имеет калиброванный переменный резистор, соединённый последовательно или параллельно с реактивным компонентом для балансирования побочного сопротивления в измеряемом элементе. Но в гипотетическом мире совершенных компонент эти простые мостовые схемы прекрасно подходят для иллюстрации основной концепции.

Пример схемы с небольшим усложнением, добавленным для компенсации реальных неидеальностей может быть найден в так называемом Мосте Вина (Wien bridge), который использует параллельно соединённые стандартные конденсатор и резистор для балансировки неизвестного последовательного внутреннего сопротивления измеряемого конденсатора. (Рисунок внизу). Все конденсаторы имеют некоторое внутреннее сопротивление, активное или эквивалентное (из-за потерь в диэлектрике), которое портит их совершенную реактивную природу. Определение внутреннего сопротивления может являться интересным для измерений, так что мост Вина даёт это сделать путём балансирования составного импеданса:

Мост Вина измеряет ёмкость Cx и сопротивление Rx «реального» конденсатора.

Из-за того, что необходимо регулировать два компонента (резистор и конденсатор), этот мост требует чуть больше времени для балансировки, чем ранее рассмотренные. Комбинированный эффект от Rs и Cs выражается в том, что необходимо регулировать амплитуду и фазу до тех пор, пока мост не сбалансируется. Сбалансировав мост, значения Rs и Cs могут быть считаны с их калиброванных шкал, параллельный импеданс вычисляется математически, и неизвестные ёмкость и сопротивление вычисляются из уравнения баланса (Z1/Z2 = Z3/Z4).

При работе с мостом Вина предполагается, что стандартный конденсатор имеет пренебрежительно малое внутреннее сопротивление, или хотя бы это сопротивление известно, так что его значение можно использовать в уравнении баланса моста. Мосты Вина полезны для определения тока утечки электролитических конденсаторов, в которых внутреннее сопротивление относительно велико. Они так же могут быть использованы как частотомеры, так как балансировка моста зависит от частоты. В этом случае конденсатор используется постоянный, верхние по схеме два резистора — переменные и их настройка производится одной ручкой (т.е. резисторы — сдвоенные).

Интересная вариация этой темы находится в следующей мостовой схеме, используемой для точного измерения индуктивностей.

Мост Максвелла — Вина измеряет индуктивность по ёмкостному стандарту.

Эта остроумная мостовая схема известна как мост Максвелла — Вина (иногда её называют мост Максвелла ), она используется для измерения неизвестных индуктивностей с помощью калиброванных резистора и конденсатора (Рисунок вверху). Калиброванные катушки гораздо труднее производить, чем конденсаторы такой же точности, и таким образом применение «симметричного» индуктивного моста не всегда оправдано. Из-за того, что сдвиги фаз на индуктивностях и ёмкостях в точности противоположны друг другу, ёмкостный импеданс может скомпенсировать индуктивный импеданс, если они находятся в противоположных плечах моста, как в данном случае.

Другим преимуществом моста Максвелла для измерения индуктивностей по сравнению с симметричным мостом является то, что устраняются ошибки измерения из-за взаимодействия между двумя индуктивностями. Магнитные поля бывает трудно экранировать, и даже небольшая связь между катушками в мосте может вызвать при некоторых условиях существенные ошибки. Без второй индуктивности в мосте Максвелла эта проблема устраняется.

Для облегчения регулировок, стандартный конденсатор (Cs) и резистор, соединённый с ним в параллель (Rs) сделаны переменными, и они оба должны быть отрегулированы для получения баланса. Однако мост может быть сбалансирован и в том случае, если используется конденсатор постоянной ёмкости и более чем один резистор сделан переменным. Но в этом случае мост сбалансировать гораздо труднее, так как разные переменные резисторы взаимодействуют при балансировки амплитуды и фазы.

В отличии от чистого моста Вина, баланс моста Максвелла-Вина независим от частоты источника питающего сигнала, и в некоторых случаях этот мост может быть сбалансирован при наличии смеси частот в источнике питания переменного тока, при этом ограничивающим фактором является стабильность индуктивности в широком диапазоне частот.

Существует большое количество подобных схем, но их обсуждение здесь неуместно. Выпускаемые импедансные мосты общего назначения могут иметь более одной конфигурации для максимальной гибкости в использовании.

Потенциальной проблемой в чувствительных мостах переменного тока является паразитная ёмкость между выводами детектора нуля и землёй. Так как ёмкость может проводить переменный ток, заряжаясь и разряжаясь, то образовываются паразитные токи, которые проходят к источнику питания, что может влиять на баланс моста: (Рисунок внизу)

Паразитная ёмкость с землёй может быть причиной ошибки в мосте.

Существующие измерители частоты язычкового типа не точны, но точны их принципы работы. Вместо механического резонанса мы можем использовать электрический резонанс и сконструировать частотомер, используя индуктивность и ёмкость, соединённые в колебательный контур (индуктивность и ёмкость соединены параллельно). Один или более компонентов сделаны регулируемыми, и измеритель установлен в схему для индикации максимального напряжения, проходящего через эти два компонента. Ручки настройки калиброваны, что бы показывать резонансную частоту при любых заданных настройках, и частота считывается с них после регулировки по максимальному отклонению индикатора. По существу это настраиваемая фильтровая схема, которая регулируется и затем показания считываются похожим образом как и у мостовой схемы (которую мы балансируем по «нулевому» сигналу и затем считываем показания). Проблема усугубляется, если источник переменного тока хорошо заземлён на одном конце, то общее сопротивление токов утечки становится гораздо меньше, и любые токи утечки через эти паразитные ёмкости в результате возрастают: (Рисунок внизу)

Ошибки из-за паразитной ёмкости более сильны, если один вывод источника переменного тока заземлён.

Один из способов существенного понижения этого эффекта — держать детектор нуля под потенциалом земли, что бы между ним и землёй не образовывалось токов через ёмкости утечки. Однако напрямую соединить детектор нуля с землёй невозможно, так как это создаст прямой путь токам утечки, что станет ещё хуже ёмкостных токов утечек. Вместо этого может быть использован схема делителя напряжения, называемая землёй Вагнера или заземлением Вагнера, которая поддерживает детектор нуля на уровне потенциала земли и которой не нужно прямое соединения с ним. (Рисунок внизу)

Земля Вагнера для источника питания переменного тока минимизирует влияние паразитных ёмкостей на землю.

Схема земли Вагнера не более чем делитель напряжения, созданный для получения отношений напряжения и сдвига фазы такими же, как и на каждой стороне моста. Из-за того, что средняя точка делителя Вагнера напрямую заземлена, любые другие схемы делителей (включая каждую сторону моста) имеют те же самые отношения напряжений и фаз, что и делитель Вагнера и питаются от общего источника переменного тока, и все они находятся под потенциалом земли. Таким образом, делитель Вагнера вынуждает детектор нуля находиться вблизи потенциала земли, без прямого соединения между детектором и землёй.

Часто возникает необходимость в проверке режима правильности настройки схемы земли Вагнера. Для этого используется двухпозиционный переключатель (Рисунок внизу), соединённый так что один вывод детектора нуля может быть подключён как к мосту, так и к земле Вагнера. Когда детектор нуля фиксирует нулевой сигнал в обоих положениях переключателя, то мост не только гарантированно сбалансирован, но и детектор нуля гарантированно находится под нулевым потенциалом, что устраняет ошибки, возникающие из-за токов утечки через ёмкости детектор нуля — земля:

Переключение в верхнее по схеме положении даёт возможность настроить землю Вагнера.

Источник