Меню

Обработка пищевых продуктов переменным электрическим током

Физические методы, электрофизические и акустические методы

Физические методы

Переработка большинства пищевых продуктов начинается с обработки их физическими методами, к которым относят измельчение, сортирование, обработку давлением (прессование), перемешивание, разделение неоднородных систем.

Измельчение

Измельчением называют процесс механического деления обрабатываемого продукта на части с целью лучшего его технологического использования.

При простом измельчении продукт разрушается, проходя через измельчающее устройство один раз, при избирательном измельчении – многократно с извлечением частицы какого-либо вещества.

Способы измельчения, используемые в промышленности:

— раздавливание между двумя поверхностями;

— удар о твердую поверхность;

— срезание частиц в окружающей среде;

— раздавливание при трении скольжения;

— измельчение немеханическими средствами (излучением, теплотой, электричеством, взрывом).

Для растительного сырья применяют истирание, резку, удар, для хрупких продуктов – раздавливание, удар.

Гомогенизация – один из способов измельчения, заключающийся в дроблении частиц или капель при одновременном равномерном распределении их в дисперсной среде.

Сортировка

Сортировка пищевых продуктов преследует две основные задачи обработки:

— отделение некачественного сырья, посторонних примесей, загрязнений;

— обеспечить стандартизирование сырья, то есть, разделение его по размеру, массе, другим свойствам.

Разделение гранулированных или измельченных твердых продуктов по размеру с целью сортировки осуществляют:

— просеиванием через сита (перфорированные), чтобы частицы попадали в отверстия, сита подвергают вибрации или вращению; Для просеивания применяют металлические или иные сита со штампованными отверстиями или сетки;

— центробежное (осуществляемое за счёт центробежной силы);

— пневматическое (сортирование с помощью применения воздуха);

— фильтрацией через фильтры;

— магнитная сепарация (с помощью магнита).

Сепарирование сыпучих продуктов проводят с целью удаления металлических примесей. Сортирование путем просеивания (мука, крупа) применяют для удаления посторонних примесей.

Сортирование по величине (размеру), или калибрование применяют в процессе первичной обработки картофеля, корнеплодов в целях уменьшения их отходов и увеличения производительности машин при механизированной чистке.

Обработка давлением (прессование).

Сущность процесса заключается в том, что обрабатываемый материал подвергается внешнему давлению при помощи специальных механических устройств – прессов.

Способы обработки:

— Отделение жидкости от твердого тела неразрывно связано с фильтрацией отжимаемой жидкости через капилляры остатка. Одновременно с удалением жидкости происходит уплотнение и брикетирование остатк, применяется в виноделии – для отжатия сока из винограда, в ликеро-водочной промышленности – для отжатия сока из ягод и плодов, в маслоделии – для отжатия растительного масла от семян; отделения жира от шквары и т.д.

— Придание пластическим телам определенной формы. В этом случае из сложной системы жидкость не отделяется, но обрабатываемая масса принимает необходимую по техническим условиям форму (брикетирование и таблетирование пищевых продуктов с добавлением связующих компонентов, агломерацию в производстве сухого молока, кофе и других, в кондитерском и макаронном производстве для придания тесу определённой формы)

— Связывание частиц зернистых, сыпучих материалов в более крупные агрегаты определённой формы.

Перемешивание

это процесс, при котором достигается беспорядочное распределение двух или более разнородных материалов с различными свойствами. Перемешивание осуществляют разными способами:

— во вращающейся или опрокидывающейся емкости;

— в емкости лопастями различной конструкции;

— перекачивая смесь через решетку с отверстиями, клапаны, штуцера или др. устройства.

Перемешивание жидких растворимых фаз осуществляют путем размешивания или разбалтывания; твердых частиц в текучих фазах – диспергированием; высоковязких систем – замешиванием; твёрдых материалов – смешиванием.

От полноты перемешивания зависит качество готовых продуктов: из-за однородности состава продуктов, равномерного распределения добавок, ингредиентов, обеспечения одинакового протекания физико-химических процессов по всему объему продукта.

Разделение неоднородных систем.

Неоднородными называют системы, образованные из двух или более фаз, которые взаимно нерастворимы друг в друге.

В производстве пищевых продуктов неоднородные системы часто приходится разделять на составные части: пивные заторы разделяют для освобождения пивного сусла от дробины; молоко сепарируют для отделения жира и подвергают сгущению для увеличения содержания жира и белка и т.д.

Разделение жидкостей от жидкостей осуществляют путём гравитационного и центробежного разделения. Эти процессы применяются для разделения воды и масла при производстве растительных масел, регенерации рыбьего жира, отделения сливок от молока.

Разделение жидкости от твердых тел осуществляют центрифугированием, фильтрованием, прессованием. Эти процессы применяют при производстве крахмала, масла, сахара, молока, соков, напитков и др., а также при различной очистке, в том числе, сточных вод.

Разделение твердых материалов от твердых осуществляют по размеру частиц путём сортировки и просеивания в мукомольной промышленности, при сортировке зерна, по цвету – при сортировке кофейных зерен.

В зависимости от того, какая фаза движется относительно другой, различают два основных метода разделения: осаждение и фильтрование. В процессе осаждения (отстаивания) частицы движутся относительно сплошной среды. При фильтровании дисперсная среда проходит сквозь концентрированную дисперсную фазу или через специально предназначенное для разделения пористое тело.

Читайте также:  Какие меры безопасности должны быть выполнены при работах во вторичной цепи между трансформаторами

Электрофизические методы

Электрофизические методы обработки пищевых продуктов основаны на использовании электромагнитной энергии излучения.

К электрофизическим методам обработки пищевых продуктов относят: обработку переменным электрическим током, в электростатическом поле, электроконтактную, высокочастотную, сверхвысокочастотную, инфракрасным излучением.

Преимущества данных методов – высокая скорость процесса (из-за высокой производительности труда), сохранение пищевой ценности продукта при высоком бактерицидном эффекте обработки, снижение тепловых потерь в окружающую среду, высокий КПД использования энергии, возможность автоматизации производственного процесса, улучшение санитарно-гигиенических условий производства

Недостатки: требования повышенной энергобезопасности оборудования, необходимость подготовки квалифицированного персонала, относительная сложность и высокая стоимость промышленных устройств.

Высокочастотный метод обработки пищевых продуктов

Данный метод эффективен при проведении тепловых и массообменных процессов: нагрев, стерилизация, размораживание, сушка, сваривание полимеров и другое.

Электроконтактные методы обработки пищевых продуктов

Это методы, осуществляемые путём непосредственного контакта электрического тока с продуктом, которые используются для нагрева, электроплазмолиза растительного сырья, электрофлорации, электростимуляции мясных туш с целью ускорения созревания мяса.

Электроплазмолиз является эффективной электроконтактной обработкой растительного сырья при сокоотдаче. Преимущества электрического метода повреждения плиточных структур (электроплазмолиза):

— не вызывает разрушения клеточных стенок и поэтому исключает переход пектиновых веществ в сок;

— способствует разрыву плазменных оболочек на более крупные частицы, что положительно сказывается на выходе сока.

Электросепарирование, или разделение дисперсий, основано на различии электрофизических, геометрических, физико-химических и других показателей, составляющих дисперсию компонентов. Сообщить частице заряд можно разными способами: в поле коронного разряда за счёт абсорбции газов на поверхности частицы, путём непосредственного контакта с электродами, электризацией трением и другими. Заряженные частицы под действием электрического поля и механических сил воздействия совершают упорядоченное, но разное движение для составляющих систему компонентов.

Комбинированные методы используются при совмещении различных вышеперечисленных методов, например, обработка мяса последовательно сверхчастотным методом на первых стадиях и инфракрасным излучением – на завершающей стадии жаренья.

Источник

Электрофизические методы обработки пищевых продуктов. Общая характеристика методов. Электрофизические методы обработки пищевых продуктов

Страницы работы

Фрагмент текста работы

электрофизическим методам обработки пищевых продуктов относят обработку переменным электрическим током, в электростатическом поле, электроконтактную, высокочастотную, сверхвысокочастотную, инфракрасным излучением. Применяют и комбинированные методы, то есть обрабатывают продукт последовательно или одновременно двумя электрофизическими методами, например, обработка мяса сверхчастотным методом на первых стадиях и инфракрасным излучением на завершающей стадии жаренья или одновременный нагрев путем конвекции горячего воздуха и инфракрасным излучением.

Электрофизические методы обработки широко применяются в самых различных отраслях промышленности, так как сравнительно с традиционными имеют неоспоримые преимущества, как и недостатки. К наиболее важным преимуществам относятся высокая скорость процесса и компактность промышленных устройств, к недостаткам — относительная сложность и высокая стоимость промышленных устройств (но не всегда).

При использовании этих методов для обработки пищевых продуктов возникают серьезные трудности, обусловленные гетерогенностью состава продуктов и различной лабильностью отдельных составных частей. Например, в разных частях объема мясных продуктов даже на расстоянии нескольких миллиметров соотношение белок : жир : вода может различаться в несколько раз; два клубня сахарной свеклы, взятые с одного участка, могут различаться по массе и содержанию сахара в 2 раза и более и так далее. Если при традиционных методах обработки статистическое усреднение продукта почти всегда позволяет вести процесс в оптимальном режиме, то, как будет показано позднее, электрофизические методы обработки воздействуют неодинаково на части продукта, различающиеся по объему. Поэтому если путем измельчения и механического перемешивания нельзя достичь однородности продукта, то использование электрофизического метода для обработки пищевых продуктов может быть весьма проблематичным.

Электрофизические методы обработки пищевых продуктов основаны на использовании электромагнитной энергии излучения.

При значительной энергии квантов излучения они не только возбуждают внешние электроны, но могут даже выбивать их из электронной оболочки с ионизацией молекул. Полагают, что способностью выбивать электроны обладают УФ-лучи, а рентгеновские и гамма-лучи могут выбивать еще более сильно связанные электроны. Возникающие при этом пробелы заполняются электронами наружных уровней и, в конечном счете, возникают ионы.

Кроме положительных ионов, в результате присоединенных электронов к атомам и молекулам возникают также отрицательные ионы. Во время этой ионизации возникают радикалы, которые хотя и являются электрически нейтральными, но имеют сильно насыщенный характер. В обводненных пищевых продуктах прежде всего образуются восстановленные [Н + ] и окисленные [ОН»] радикалы. Вследствие своей реакционности они могут вступать в различные реакции.

Следовательно, связь между атомами и молекулами могут разорвать только такие кванты энергии, которые выше энергии связи. Величина энергии квантов различного излучения равна:

УФ-излучение (X= 1,410 нм)х90 еу; Видимый свет (А, = 3,6 • 10 2 нм)хЗ,4 еу; ИК-излучение = 7,8 • 10 2 нм)х1,6 еу; Высокочастотная энергия (А, = 3,4 • 10 5 нм)х0,004 еу.

Читайте также:  Как определить коммутатор постоянного тока

В табл. 2.1 приведены виды энергии различных связей.

Из приведенных данных видно, что энергии ИК-излу-чения достаточно для разрыва водородных мостиков и, возможно, некоторых главных валентностей. Водородные мостики имеют в структуре макромолекулы, например, белка, и поэтому можно было бы предположить атермическое

Источник

Излучением

Обработка пищевых продуктов инфракрасным

Электрофизические методы обработки пищевых продуктов

К электрофизическим методам обработки пищевых продуктов относят обработку:

· переменным электрическим то­ком;

· в электростатическом поле;

Применяют и комбинированные методы, то есть обрабатывают продукт последовательно или одновременно двумя электрофизическими методами, например, обработка мяса сверхчастотным методом на первых стадиях и инфракрасным излучением на завершающей стадии жаренья или одновременный нагрев путем конвекции горячего воздуха и инфракрасным излучением.

Электрофизические методы обработки широко применяются в самых различных отраслях промышленности, так как сравнительно с традиционными имеют неоспоримые преимущества, как и недостатки. К наиболее важным преимуществам относятся высокая скорость процесса и компактность промышленных устройств, к недостаткам — относительная сложность и высокая стоимость промышленных устройств (но не всегда).

При использовании этих методов для обработки пищевых продуктов возникают серьезные трудности, обусловленные гетерогенностью состава продуктов и различной лабильностью отдельных составных частей. Например, в разных частях объема мясных продуктов даже на расстоянии нескольких миллиметров соотношение белок : жир : вода может различаться в несколько раз; два клубня сахарной свеклы, взятые с одного участка, могут различаться по массе и содержанию сахара в 2 раза и более и так далее. Если при традиционных методах обработки статистическое усреднение продукта почти всегда позволяет вести процесс в оптимальном режиме, то, как будет показано позднее, электрофизические методы обработки воздействуют неоди­наково на части продукта, различающиеся по объему. Поэтому если путем измельчения и механического перемешивания нельзя достичь однородности продукта, то использование электрофизического метода для обработки пищевых продуктов может быть весьма проблематичным.

Электрофизические методы обработки пищевых продуктов основаны на использовании электромагнитной энергии излучения.

Согласно квантовой теории Планка, излучение и поглощение энергии атомами равно или кратно величине.

Инфракрасное излучение используется главным образом для нагревания продукта.

В отличие от кондуктивного нагрева, при нагреве инфракрасным излучением поверхность продукта остается открытой, с нее идет интенсивное испарение воды, вызывающее охлаждение поверхностных слоев. Это также дает возможность подводить к продукту интенсивный поток тепла — до тех пор, пока поверхностные слои не будут чрезмерно обезвожены.

Нагрев инфракрасным излучением осуществляется следующим образом. Источник или генератор ИК-излучения нагревается от обычных источников (например, электрической энергией для светлых излучателей и тэнов, энергией сгорания газа для газовых беспламенных горелок и так далее). В результате нагрева в источнике излучения повышается общая кинетическая энергия молекул, происходит более частое их соударение, часть электронов попадает на возбужденную орбиту, при их возвращении на основную орбиту генератор вырабатывает энергию в виде электромагнитного излучения.

Генерируемое электромагнитное излучение направленным потоком облучает обрабатываемый продукт.

При столкновении квантов излучения с электронами в молекуле продукта они передают всю свою энергию электронам, которые вследствие этого переходят в возбужденное состояние и затем возвращаются на основную орбиту, теряя при этом избыток энергии в виде тепла, в результате чего происходит нагревание продукта.

Качественное отличие ИК-нагрева от диэлектрического заключается в механизме трансформации энергии излучения в тепло. ИК-поле проникает на небольшую глубину в продукт. Глубина проникновения ИК-излучения обратно пропорциональна коэффициенту поглощения. С уменьшением длины волны глубина проникновения ИК-лучей увеличивается и может достигать в отдельных случаях 3-5 мм. Вследствие чего такой вид нагрева является промежуточным между поверхностным и объемным.

Применение ИК-нагрева позволяет значительно сократить продолжительность процесса тепловой обработки, уменьшить металлоемкость и размеры аппаратов, автоматизировать производство, получить продукт высокого качества.

При выборе излучателя учитывают целый ряд факторов — такие, как особенности технологического процесса, свойства материала, интенсивность излучения генератора, возможность импульсного облучения, экономические требования и так далее.

В наиболее общем случае ИК-аппарат состоит из камеры, транспортирующего органа, ИК-излучателей, системы вентиляции, управления и автоматики.

При выборе излучателя следует исходить из особенностей обрабатываемого материала. При этом особенное значение имеют оптические свойства обрабатываемого материала.

Под оптическими свойствами материала понимают его пропускательную, поглащательную и отражательную способность.

Оптические свойства материала зависят от многих факторов, в том числе от структуры материала, содержания в нем влаги и доли её связи с материалом, состояния и цвета поверхности продукта.

Пищевые продукты содержат большое количество влаги с разными формами связи, что неодинаково отражается на общем спектре поглощения материала.

Различают интегральные и спектральные оптические характеристики продуктов. Для практических целей в условиях конкретного излучателя и объема нагрева лучше пользоваться интегральными характеристиками, отражающими взаимодействие объема с лучистой энергией во всем используемом диапазоне длин волн. Интегральные характеристики относятся к длине волны, соответствующей максимуму излучения излучателя.

Читайте также:  Хуже всего проводят электрический ток тест стоматология

Пищевые продукты в зависимости от химического состава и других показателей обладают выраженной селективностью к поглощению ИК-излучения в различных областях спектра. Поэтому источник излучения следует выбирать с учетом спектральных характеристик материала, КПД аппарата, интенсивности подвода теплоты, а также экономических показателей процесса.

Как показывает опыт эксплуатации промышленных установок ИК-излучения, практически во всех случаях ИК-обработки наблюдается повышение качества и выхода готовой продукции, снижение энергетических затрат, упрощение конструкции аппарата.

Нагрев продукта в оптимальных условиях, как правило, обеспечивает большой выход и лучшее качество. При этом обеспечиваются и более высокие технико-экономические показатели процесса.

7.2. СВЧ – обработка пищевых продуктов

Нагрев СВЧ-энергией является принципиально новым методом нагрева продукта в поле электромагнитного излучения. В отличие от всех других способов нагрева, при которых тепло воспринимается поверхностью продукта и проникает внутрь за счет теплопроводности, электромагнитное поле СВЧ способно проникать на значительную глубину, что позволяет осуществлять объемный нагрев независимо от теплопроводности.

Приготовление кулинарных изделий осуществляется в специальных СВЧ-шкафах (печах), использующих принцип диэлектрического нагрева, при котором прогревается только помещенный в камеру продукт, как правило, без добавления воды и жира. При этом из-за потерь тепла в окружающую среду температура поверхностных слоев меньше, чем центральных, в результате чего на поверхности продукта отсутствуют специфическая корочка и колеровка.

По своим органолептическим свойствам продукт, доведенный до готовности в СВЧ-аппарате, приближается к продукту, полученному в результате припускания.

Основным преимуществом объемного прогрева продуктов в СВЧ-поле является быстрота приготовления пищи: время приготовления уменьшается приблизительно в 10 раз по сравнению с поверхностным нагревом и составляет для большинства блюд несколько минут. При этом сохраняются питательные вещества и значительно улучшаются вкусовые качества по сравнению с традиционным способом приготовления пищи. Исключается пригорание изделий и улучшаются санитарно-гигиенические условия труда обслуживающего персонала. СВЧ-аппарат практически безынерционен в управлении, причем при СВЧ-нагреве отсутствует холостой ход и связанные с ним потери тепла. Нагрев прекращается одновременно с прекращением подачи энергии. СВЧ-нагрев наиболее эффективен для приготовления вторых блюд, а также для разогревания замороженных готовых изделий.

У пищевых продуктов, прошедших тепловую обработку в СВЧ-шкафах, отсутствует корочка, характерная для жаренья традиционным способом. Поэтому в шкафах СВЧ устанавливают ИК-излучатели, которые включают на 1-2 мин после доведения изделий до состояния кулинарной готовности. В результате такой обработки изделия приобретают специфическую корочку и колер.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Электрофизические процессы и методы обработки

Электрофизические процессы обработки материалов и пищевых продуктов основаны на непосредственном воздействии на материал электрического тока в сочетании с механическим воздействием, а также с использованием электромагнитной энергии излучения.

электрополеК электрофизическим методам относят обработку:

  1. переменным электрическим током;
  2. в электростатическом поле;
  3. электроконтактную;
  4. высокочастотную;
  5. сверхвысокочастотную;
  6. инфракрасным излучением.

Иногда применяют комбинированные методы. Например, на первых стадиях мясо обрабатывают сверхчастотным методом, а на завершающей стадии жаренья – инфракрасным излучением.

Электрофизические методы обработки широко применяются в различных отраслях промышленности. К преимуществам их относятся высокая скорость процесса и компактность промышленных устройств, к недостаткам – относительная сложность и высокая стоимость промышленных устройств.

Сущность обработки в электростатическом поле состоит в том, что ионизированный газ, перемещаясь в электрическом поле, сообщает заряд тонкодисперсным частицам вещества (коптильный дым, пыль и др.), которые приобретая заряд, также совершают упорядоченное направленное движение от одного электрода к другому. Используют этот метод для электрокопчения, электроочистки газов, электросепарирования и др.

Электроконтактные методы обработки осуществляются путем непосредственного контакта электрического тока с продуктом. Применяются эти методы для нагрева, электроплазмолиза растительного сырья, электростимуляции.

Сущность электроконтактного нагрева состоит в том, что электрический ток, проходя через продукт, нагревает его. Этот метод весьма эффективен при размораживании мясных и рыбных блоков. Методом электроконтактного нагрева создан новый процесс – электрокоагуляции – кратковременный нагрев продукта. Например, нагрев колбасного фарша в течение 15– 16 с в диэлектрической форме до +50…70 °С позволяет улучшить консистенцию фарша, сохранить форму при дальнейшей обработке.

Эффективной электроконтактной обработкой растительного сырья является электроплазмолиз. Воздействие электрического тока на растительную клетку увеличивает проницаемость протоплазменной оболочки клетки и способствует повышению сокоотдачи. Для электроплазмолиза используют электроплазмолизаторы самых разнообразных конструкций: валковый, шнековый, центробежный и др.

В основу процесса электростимуляции положено явление механического сокращения мышечных волокон мяса под действием электрического тока, что способствует ускорению процесса созревания мяса.

Для проведения электростимуляции разработаны различные генераторы с регулированием частоты следования импульсов.

Высокочастотный и сверхвысокочастотный методы обработки являются принципиально новыми методами нагрева продукта в поле электромагнитного

Источник