Меню

Общие сведенья сила тока это

Электрический ток. Все о силе тока в физике

Прежде чем выяснять, что такое сила тока и от чего она зависит, нужно дать определение электрическому току как движению заряженных частиц.

Что такое электрический ток

Слово “ток” обозначает течение, а электрический ток – это течение заряда. Какие же частицы обладают зарядом?

В металлах имеются свободные электроны, а в растворах солей, кислот или щелочей – положительно и отрицательно заряженные ионы. Все эти частицы могут участвовать в создании электрического тока. Но сами по себе заряженные частицы не создают электрический ток.

Чтобы в проводнике возник электрический ток, движение заряженных частиц должно быть упорядоченным. В соединительном проводнике свободные электроны перемещаются под действием электрического поля.

Итак, электрический ток – это упорядоченное (направленное) движение заряженных частиц под действием электрического поля.

Источники электрического тока

Чтобы получить электрический ток в проводнике, необходимо привести заряженные частицы в направленное движение. Но как получить ток, который существовал бы длительное время?

Возьмем два заряженных тела А и В, заряды которых равны по модулю, но противоположны по знаку, и соединим их проводником.

На отрицательно заряженном теле находится избыток электронов, на положительно заряженном теле – недостаток электронов. В проводнике на короткое время возникнет электрический ток. Он будет существовать до тех пор, пока не исчезнет электрическое поле.

Процесс разделения зарядов осуществляют источники электрического тока.

В источнике тока благодаря химическим или иным процессам (в зависимости от принципа его действия) происходит разделение положительно и отрицательно заряженных частиц.

Эти разделенные частицы накапливаются на так называемых полюсах источника тока.

Примерами источников тока являются аккумуляторы. Они могут быть свинцовыми(кислотными), а также широкое применение получили железно-никелевые(щелочные).

В последние десятилетия наряду с традиционными источниками тока стали широко применяться источники, изготовленные на основе химического элемента лития.

Впечатляет также разнообразие габаритов источников электричества: от миниатюрныхбатареек для питания ручных часов и до мощных аккумуляторных батарей, устанавливаемых на подводных лодках.

Что такое сила тока

Подобно автомобилям разных конструкций и оснащения, заряженные частицы перемещаются в прямом или обратном направлении, быстрее или медленнее. Их скорость и концентрация создают «движение», только не на шоссе, а в проводнике.

Для количественной характеристики электрического тока в цепи вводится понятие силы тока. Силу тока обочначают буквой І.

Сила тока

Сила тока – физическая величина, равная отношению количества заряда к величине этого промежутка времени.

Это физическая величина, равная количеству заряда, проходящего за единицу времени через поперечное сечение проводящего материала-проводника. Его носители могут быть как отрицательно, так и положительно заряженные.

В первом случае, это электроны или отрицательные ионы-анионы, во втором – положительные ионы-катионы или «дырки» (пустоты в кристаллической решетке полупроводника, которые ведут себя как положительно заряженные частицы).

Электрическое напряжение

Нетрудно представить, что электрический ток подобен потоку воды в шланге. Если удерживать оба конца шланга на одном уровне, то никакого течения воды не будет.

Если же один из концов опустить вниз, то вода потечет с более высокого уровня на низкий. Разность уровней воды аналогична напряжению источника тока.

Чем выше напряжение (чем больше разница в уровнях воды), тем больше сила тока в цепи (тем быстрее движется вода в шланге).
Работу электрического поля, создающего электрический ток, называют работой тока Аэл.

Работа тока зависит от напряжения.
Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного электрического заряда из одной точки в другую и обозначают буквой U.

Единица электрического напряжения называют вольтом.

Прибор, с помощью которого измеряют напряжение на полюсах источника тока или на каком-нибудь участке цепи, называют вольтметром. По внешнему виду и устройству вольтметр очень похож на амперметр.

На электрических схемах вольтметр изображают в виде кружка с буквой V.

Электрическое сопротивление

Если включать в цепь различные проводники, то сила тока будет различной.

Посмотрим на зависимость силы тока от вида проводника, включенного в цепь. Соберем цепь, состоящую из источника тока, ключа, лампочки и амперметра. Будем последовательно подсоединять проводники одинакового размера, но сделанные из разного материала: железа, меди, никеля.

Свечение лампочки и сила тока больше при подключении железного проводника, чем при включении никелевого, но меньше, чем при включении медного.

Разные проводники обладают различным сопротивлением электрическому току из-за особенностей в строении их кристаллической решетки.

Такая зависимость остается справедливой не только для металлов, но и для проводников другой природы, например электролитов.
Электрическое сопротивление – это физическая величина характеризующая способность проводника препятствовать протеканию электрического тока в этом проводнике.

Сопротивление обозначают буквой R.

Единицу сопротивления называют Ом (1 Ом). 1 Ом – это сопротивление такого проводника, в котором при напряжении на концах 1В сила тока равна 1А:

Как возникает сила тока

Сила тока возникает из-за разности значений напряжения (или потенциалов) в начале и на конце проводника. Для поддержания разности потенциалов нужен источник энергии.

В зависимости от устойчивости показателя и направления протекания, ток бывает постоянным или переменным. Постоянный может существовать только в замкнутом контуре, в котором есть непрерывное круговое движение заряженных частиц. Например, в гальванических элементах – батарейках и аккумуляторах. В этих устройствах энергия вырабатывается благодаря химическим процессами.

Возникновение силы тока

Для возникновения постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.

Постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного, в частности, производимого генераторами.

Работа электронной аппаратуры от сети переменного источника в квартирах осуществляется посредством дополнительных приборов: блоков питания с выпрямителями сигналов, стабилизаторов напряжения.

В чем она измеряется и как посчитать

Сила тока измеряется в амперах – обозначение 1 А. Ампер – одна из семи основных единиц.

1А = 1Кл/c, где Кл (или С) – это кулон, единица измерения количества электрического заряда.

Сила тока обозначается символом I (согласно первой букве французского Intensite´ du courant).

Величина ее определяется по формуле I=qn Vср S cos a, где:

  • q – сумма зарядов;
  • n – концентрация частиц;
  • Vср – средняя скорость их упорядоченного движения;
  • S – площадь проводника;
  • a – угол между вектором направления движения и вектором нормали (перпендикуляра) к поверхности проводника.

Ампер

Ампер – единица измерения силы электрического тока.

Закон Ома

Экспериментально доказано, что во сколько раз увеличивается напряжение на участке цепи, во столько же раз увеличивается и сила тока на этом участке. То есть сила тока в проводнике прямо пропорциональна напряжению на концах этого проводника.

График зависимости силы тока от напряжения будет представлять собой прямую линию, проходящую через начало координат . Его называют вольт-амперной характеристикой цепи.

Зависимость силы тока от сопротивления показывает, что чем больше сопротивление проводника, тем меньше сила тока при одном и том же напряжении между концами проводника. Поэтому сила тока в проводнике обратно пропорциональна сопротивлению проводника

Для участка цепи величина I рассчитывается по формуле немецкого физика Георга Ома, открывшего в 1926 г. закон взаимосвязи между силой тока, напряжением и сопротивлением проводника:

  • U – напряжение (или падение напряжения, или разность потенциалов), измеряется в вольтах – обозначение В или V;
  • R – сопротивление проводника, измеряется в омах – обозначение Ом или W.

Или по формуле I=UG, где обозначение G – это проводимость или электропроводность (величина, обратная сопротивлению, измеряется в сименсах, обозначение – См или S).

Расчет для полной цепи происходит по формуле I=e/R+r, где:

  • e – ЭДС или электро-движущая сила в цепи, измеряется в вольтах;
  • R – суммарное сопротивление всех приборов, включенных в цепь;
  • r – внутреннее сопротивление источника напряжения.

Сила тока зависит от электрического напряжения (или разности потенциалов, или ЭДС). В случаях, когда r<>R, можно считать, что она обратно пропорциональна либо сопротивлению цепи, либо сопротивлению источника.

Закон Ома

Закон Ома для полной цепи.

Значение I связано с показателем скорости преобразования электрической энергии – мощностью P (единицы измерения ватты -обозначение Вт или W). Для линейной цепи, в которой соблюдается закон Ома, расчет P производится по формуле:

P=IU или P=I2R=U2/R.

Значение I прямо пропорционально мощности: I=P/U. В приборах большей мощности возникает ток большей силы.

Как измерить силу тока

Эту характеристику можно измерить с помощью амперметра. Прибор последовательно подключается к электрической сети (плюс к плюсу, минус к минусу). Чем ниже сопротивление амперметра, тем меньше его влияние на измерения, и тем они точнее. Если сопротивление амперметра стремится к нулю, он нейтрален и не влияет на показатели сети.

Работа амперметра основана на магнитном действии тока. Чем больше сила тока, проходящего по катушки, тем сильнее она взаимодействует с магнитом и тем больше угол поворота стрелки амперметра.

При измерении силы тока амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить.

У каждой клеммы прибора стоит свой знак: “+” или “-“.

Клемму со знаком “+” нужно соединить с проводом, идущим от положительного полюса источника тока, а клемму со знаком “-” – с проводом, идущим от отрицательного полюса источника тока.

Читайте также:  Что такое электрический ток чем он опасен для человека

На электрических схемах амперметр изображают в виде кружка с буквой А.

Виды амперметров

По конструкции амперметры бывают:

  • аналоговые (со стрелочной измерительной головкой);
  • цифровые (с индикатором).

Амперметр

Амперметр – прибор для измерения силы тока в амперах.

По способу измерения:

  1. Магнитоэлектрические, в которых отклонение чувствительной стрелки и показатели зависят от силы взаимодействия полей постоянного магнита и поля электрического тока в алюминиевой рамке, и угла поворота последней.
  2. Электромагнитные, показатели которых меняются с подвижками железного сердечника под влиянием электромагнитного поля катушки.
  3. Электродинамические, в которых отклонение стрелки связано с притяжением или отклонением подвижной катушки относительно неподвижной, соединенных последовательно или параллельно.
  4. Тепловые, в которых при нагреве электрическим током происходит изменение длины металлической нити и положения связанной с нитью измерительной стрелки.
  5. Индукционные, в которых связанный со стрелкой металлический диск отклоняется под воздействием электромагнитного поля неподвижных катушек.
  6. Детекторные, в которых магнитоэлектрический прибор соединен с выпрямителем-детектором.
  7. Термоэлектрические, которые состоят из нагревателя и магнитоэлектрического измерительного механизма.
  8. Фотоэлектрические, в которых фотоэлектрический элемент преобразует световой поток в электрический.

Магнитоэлектрические приборы определяют только силу постоянного тока, индукционные и детекторные – переменного. Фотоэлектрические высокоточные приборы работают с постоянным током и током низкой и высокой частоты.

Остальные из перечисленных подходят для разных токов.

Приборы бывают многофункциональными, т.е. действующими в разных режимах. Например, мультиметр работает и как вольтметр, и как омметр, и как мегомметр (для высоких сопротивлений).

В всех современных измерительных приборах есть переключатель диапазона чувствительности.

Правила измерения

  1. Амперметр включается в электросеть последовательно, «в разрыв цепи».
  2. При включении прибора в сеть, необходимо соблюдать полярность, присоединяя «+» прибора к «+» источника тока, а «-» к «-».
  3. Тестируемая линия при подключении должна быть обесточена. Иначе прикасание щупами прибора к проводам или контактам может вызвать короткое замыкание.
  4. При высоких напряжениях в цепь переменного тока помимо амперметра включается трансформатор или шунт, в цепь постоянного – магнитный усилитель или шунт.
  5. Тип амперметра для измерений выбирают в соответствии с типом электрического прибора или линии. Также учитывают требуемую точность показателей.

Перед подключением необходимо подробно изучить инструкцию к амперметру.

Источник

Сила тока — законы, формулы и примеры расчетов

Начинающие электротехники пренебрегают ей, и делают основной акцент на напряжении. Это часто приводит к дополнительным финансовым затратам, направленным на закупку радиодеталей, вышедших из строя.

Общие сведения

Новички очень часто путают электрический ток и его силу. Первым является движение заряженных частиц или носителей заряда, на которые действует электромагнитное поле в некотором направлении. Сразу следует отметить, что ток является векторной величиной, поскольку имеет направление. Заряженные частицы могут быть различные, а не только электроны.

В генерации электромагнитного поля принимают «участие» протоны и нейтроны. В полупроводниках носителями зарядов являются дырки. В электролитах (растворов, проводящих электроток) и газах — ионы.

Определение силы тока: количество электричества Q, протекающее через поперечное сечение S проводника любого типа (проводник или полупроводник) за определенную единицу времени t (берется величина, равная 1 секунде). Q — величина, характеризующая количество одиночных носителей заряда, протекающих через проводник за некоторое время.

Физики сокращенно называют величину током.

Единица измерения

Обозначение силы тока зависит от его типа. Он бывает постоянным и переменным, которые отличаются направлением и частотой. В первом случае записывается прописной буквой I. Он имеет только одно направление. Во втором — i. Кроме того, он постоянно меняет направление с частотой, которая определяется по некоторому закону. Например, в жилых помещениях она составляет 50 Гц.

Единица силы тока равна одному амперу (А). Физический смысл 1 А следующий: неизменяющийся ток, проходящий по двум проводникам, длина которых стремится к бесконечности и площади поперечного сечения, стремящейся к 0, расположенных в безвоздушном пространстве (вакууме) на расстоянии 1 м и вызывающий силу взаимодействия между ними, равную 20 мкН. Приставка «мк» означает, что число 20 следует умножить на 10^(-6).

Начинающему радиотехнику следует ознакомиться с кратными величинами, поскольку не всегда используется А. В электронике, радиотехнике и промышленности применяются его производные величины (в технических справочниках есть специальные таблицы):

  1. Тераампер (ТА): 1 ТА = 10 12 А.
  2. Гигаампер (ГА): 1 ГА = 10 9 А.
  3. Мегаампер (МА): 1 МА = 10 6 А.
  4. Килоампер кА (1 кА = 10 3 А) используется в различной промышленности. Например, распределительные станции для шахтного оборудования.
  5. Миллиампер мА: 1 мА = 10^(-3) А = 0,001 А.
  6. Микроампер мкА: 1 мкА = 10^(-6) А.

Первые три применяются в атомной и силовой энергетике. Электростанции являются очень мощными источниками электричества, и генерируют огромные значения тока. Вторую приставку используют для расчетов в некоторых отраслях металлообрабатывающей и угледобывающей промышленностях. Например, для расчета распределительных станций, которые питают мощное шахтное оборудование.

С последними двумя приставками можно столкнуться при проектировании и расчете маломощных устройств (например, материнская плата для ноутбука или планшетного ПК). Однако приставки кратности применяются только для записи конечных результатов.

Подключение амперметра

Значение тока можно получить двумя методами. Первый из них является практическим. Измерение значения выполняется при помощи прибора, который называется амперметром. Он подключается в цепь последовательно с нагрузкой (рис. 1).

Рисунок 1. Схема подключения амперметра в простейшем блоке питания

На рис. 1 амперметр подключается последовательно к нагрузке «Н». Если включить блок питания в сеть без нее, то показание стрелки прибора будет незначительным, поскольку диодный мост потребляет малое количество электроэнергии, и является вторичным источником питания. Конденсаторы сглаживают пульсации тока, т. е. делают из него постоянный ток без колебаний и паразитарных частот.

Амперметры отличаются между собой по классу точности. Начинающему радиолюбителю очень важно знать порядок перевода одной единицы в другую. Для выполнения этой операции применяется определенный алгоритм.

Алгоритм перевода

Во время вычислений следует переводить значения некоторых величин в систему, которая является удобной. Однако сделать это без ошибок иногда не получается, поскольку новички не придерживаются некоторых правил. Специалисты предлагают специальный алгоритм, позволяющий правильно осуществлять эту операцию:

  1. Записать исходную величину.
  2. Умножить на значение приставки, представленное в экспоненциальной форме (например, 1 мкА = 1 * 10^(-6)).
  3. Записать результат.

Далее следует разобрать алгоритм перевода на практическом примере. Пусть нужно перевести 1200 мкА в амперы. Если воспользоваться вышеописанным алгоритмом, то получится такой результат:

  1. 1200 мкА (1 мк = 10^(-6)).
  2. Умножение: 1200 * 10^(-6) = 12 * 10^2 * 10^(-6) = 12 * 10^(2 — 6) = 12 * 10^(-4).
  3. Результат: 12 * 10^(-4).

Следует отметить, что представление приставки в экспоненциальной форме является удобной записью, поскольку экономит время (проще набрать на калькуляторе 12, а не 0,0012). Кроме того, перевод может сыграть важную роль при расчетах. Необходимо всегда соблюдать размерность величин.

Формулы и соотношения

Для расчетов следует знать основные законы и следствия из них.

Они указывают на зависимость искомой физической величины от других.

Используя основные соотношения, можно выполнить расчет других параметров (мощности, падения напряжения на одном из потребителей и т. д.).

К основным законам следует отнести следующие:

  1. Правила Ома.
  2. Закон теплового действия тока.
  3. Законы Кирхгофа (I и II).

Первый связывает ток с электросопротивлением, ЭДС и напряжением. Для переменного он сильно отличается, поскольку вводится понятие активной и реактивной нагрузок. Второй применяется для расчета количества теплоты, выделяемого проводником при прохождении через него электротока.

Законы Кирхгофа применяются в электронике для расчета токов. Примером такого прибора является УЗО (устройство защитного отключения). Его принцип действия основан на I законе Кирхгофа.

Закон Ома

Закон Ома радиолюбители применяют для расчета не только участка электроцепи, но и всей схемы. Он представлен в двух формулировках: для участка цепи и полной. В первом случае берется какой-либо участок без учета источника питания. Во втором — появляется ЭДС и внутреннее сопротивления гальванического элемента (источника питания).

Формулировка в первом случае следующая: ток, протекающий через заданный участок цепи, прямо пропорционально зависит от значения напряжения (U), и обратно пропорционален электрическому сопротивлению этого участка (R). Формула силы тока имеет такой вид: I = U / R. Если рассматривать полную цепь, состоящую из резистора, источника питания и амперметра, то появляются параметры ЭДС и внутреннее сопротивление элемента питания (Rип).

Формулировка имеет следующий вид: сила тока (i или I) прямо пропорционально зависит от ЭДС (e) в полной цепи и обратно пропорционально от алгебраической суммы сопротивлений резистора (R) и гальванического элемента (Rип). Запись закона в математической форме следующая: i = e / (R + Rип).

На основании формул можно вывести некоторые соотношения. Они связывают одну физическую величину с другой. Это позволяет без особых проблем находить неизвестные параметры. Формулы называют еще следствием из законов. Вот некоторые из них:

  1. Нахождение сопротивлений резистора и источника питания: R = U / I, R = (e / i) — Rип и Rип = (e / i) — R.
  2. Напряжение и ЭДС: U = I * R и e = i * (R + Rип).

Кроме того, нужно знать еще одну формулу, с помощью которой находится мощность: P = U * I = U^2 / R = R * I^2.

Формула теплого действия

Электроток, протекающий через проводник, оказывает на последний тепловое воздействие. При этом происходит преобразование электроэнергии в тепловую. Объясняется этот феномен взаимодействием свободных носителей заряда с узлами кристаллической решетки, т. е. приводит к выделению некоторого количества теплоты Q.

Читайте также:  Таблица сечения по току для трансформаторов

Два ученых открыли (независимо друг от друга) закон вычисления тепловой энергии, которая выделяется при протекании электричества за некоторое время (t). Он получил название «закон Джоуля- Ленца». Его формулировка следующая: количество теплоты, которое выделяет проводник в результате прохождения через него электричества, прямо пропорционально зависит от I, U и t. Математическая форма следующая: Q = UIt = RtI^2 = (tU^2) / R = Pt.

Физики рекомендуют воспользоваться формулами-следствиями из него:

  1. Ток: I = Q / (Ut) = [(Q / (Rt)]^(1/2).
  2. Напряжение: U = Q / (It) = [QRt]^(1/2).
  3. Время протекания тока: t = Q / (UI) = Q / (RI^2) = Q / (U^2 / R) = Q / P.

Когда ток не совершает какую-либо механическую работу и не действует на какой-либо элемент цепи, тогда выполняется преобразование всей электроэнергии в тепловую, т. е. Q = A.

Правила Кирхгофа

В физике всего два закона Кирхгофа. Формулировка первого имеет следующий вид: ток, входящий в узел цепи, равен исходящему току. Для примера следует рассмотреть схему 1. Она состоит из потребителей, которые являются резисторами.

Схема 1. Первый закон Кирхгофа

Ток I1 входит в узел А. После него распределяется на I2 и I3. Следовательно, I1 = I2 + I3. С узла D выходит ток I1, который состоит из I2 и I6.

Однако для расчета электрических цепей недостаточно одного закона Кирхгофа. Рекомендуется использовать также и второй (схема 2). Его формулировка следующая: в произвольном замкнутом контуре всегда выполняется равенство алгебраической суммы всех ЭДС и падений U на каждом элементе резистивного типа. Необходимо отметить, что е и U являются векторными величинами. Их направление указывается с помощью знаков «+» и «-», которые определяются по такому алгоритму:

  1. Сделать выбор направления, по которому осуществляется обход: по часовой или против часовой стрелки.
  2. Осуществить выбор направления протекания токов по цепи.
  3. Расставить знаки е: совпадение с направлением — «+», а в другом случае — «-».

Физики рекомендуют рассматривать любой закон на практическом примере. На схеме 2 показаны следующие элементы: резистор R, источники питания с ЭДС Е1 и Е2. Следует отметить, что r1 и r2 — внутренние сопротивления источников питания с Е1 и Е2 соответственно.

Схема 2. Второй закон Кирхгофа

На схеме 2 видно, что Е1 направлена по часовой стрелке, а Е2 — в обратную сторону. Закон запишется таким образом: Е1 — Е2 = I1 * r1 — I2 * r2. Чтобы выразить величину Е2, следует рассмотреть правую ветвь: Е2 = I2 * r2 + I * R. Таким же образом находится и Е1: Е1 = I1 * r1 + I * R. Ток через резистор R будет равен алгебраической сумме I1 и I2.

Пример решения

Для закрепления знаний следует перейти к их практическому применению. Используя данные на схеме 2, следует вычислить ток, который протекает через резистор R. Кроме того, известно, что I1 в 2 раза больше I2. Нужно определить количество теплоты при следующих параметрах: максимальный ток I и время 5 минут. Решение осуществляется следующим образом:

  1. Общий ток через R: I = I1 + I2 = 2 * I2 + I2 = 3 * I2.
  2. Необходимо рассмотреть левую ветвь: Е1 = I1 * r1 + I * R = 2 * I2 * r1 + 3 * I2 * R.
  3. Составить уравнение: 12 = 2 * I2 * 0,1 + 3 * I2 * 2.
  4. Упростить его: I2 * (2 * 0,1 + 3 * 2) = I2 * (0,2 + 6) = 6,2 * I2 = 12.
  5. Решить равенство: I2 = 12 / 6,2 = 1,94 (A).
  6. Вычислить искомое значение тока: I = 3 * I2 = 3 * 1,94 = 5,81 (А).
  7. Количество теплоты (t = 5 минут = 5 * 60 = 300 секунд): Q =t * R * I^2 = 300 * 20 * 33,76 = 202536,6 Дж = 0,2 МДж.

Для проверки правильности решения специалисты рекомендуют воспользоваться специальными приложениями для построения и расчета электрических принципиальных схем.

Таким образом, начинающему радиолюбителю необходимо ознакомиться с основными законами физики, а затем приступать к расчетам схем. Не следует упускать из вида силу тока, поскольку от этого параметра зависит правильность работы любого устройства.

Источник

Сила тока

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать. Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

дети поливают огород

Давайте теперь проведем аналогию. Пусть шланг – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

сила тока формула

Δq – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10 -19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅10 18 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅10 18 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

Читайте также:  Номинальный ток двигателя 55квт

Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели, через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

сопротивление проводника

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

удельное сопротивление материалов

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

формула закона Омазакон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм 2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

сила тока в проводнике

задача на силу тока в проводнике

решение задачи сила тока в проводнике

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

как измерить силу тока

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Источник



Сила тока

О чем эта статья:

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

В Skysmart ученики погружаются в мир физических законов без стресса и с удовольствием. Обучение проходит в интерактивном формате, с захватывающими примерами из жизни, интересной домашкой и личным трекером прогресса. Все это помогает подружиться с физикой, подтянуть оценки и сдать экзамены.

Приходите на бесплатное вводное занятие — покажем, как проходит обучение и вдохновим на учебу!

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.

Сила тока

I = q/t

Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два параллельных проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

тепловой амперметр

Разобраться во всех видах амперметров и не только в них помогут внимательные учителя детской школы Skysmart. Приходите на бесплатный вводный урок и начните заниматься в удовольствие уже завтра!

Источник