Меню

Определение магнитного момента витка с током

Поле витка с током

Магнитное поле, создаваемое элементом тока.

Для магнитного поля справедлив принцип суперпозиции: магнитная индукция поля B, создаваемого несколькими источниками, равна векторной сумме индукций отдельных источников:

Поэтому магнитное поле тока можно рассматривать, как сумму полей всех движущихся зарядов. Поле, создаваемое участком проводника, повторяет свойства поля движущегося точечного заряда: такая же зависимость магнитной индукции от направления и расстояния; направление силовых линий находится по правилу буравчика (см. рис.9).

Магнитная индукция dB, создаваемая участком проводника длиной dL, рассчитывается по закону Био-Савара- Лапласа:

где I – ток, протекающий через участок проводника; r – радиус-вектор, проведенный от участка проводника в точку, в которой рассчитывается магнитная индукция; dL – вектор, его направление совпадает с направлением тока в проводнике.

Поле, создаваемое проводником произвольной формы, находится интегрированием выражения (13), по всем элементам проводника dL:

Результирующее поле зависит от расстояния до проводника, от конфигурации и размеров проводника, а также от силы тока в цепи.

Рассчитаем магнитную индукцию на оси круглой рамки с током.

Вектор магнитной индукции dB в точке А, создаваемой элементом рамки dL,находится по формуле (10) (см. рис.10)

Вектор dB перпендикулярен r и dL, он направлен под углом φ к оси кольца. Его величина равна

Полное магнитное поле от всего проводника с током находится интегрированием выражения (10) по всему контуру. Прежде, чем интегрировать, отметим, что из-за осевой симметрии задачи результирующая индукция должна быть направлена вертикально вверх. Горизонтальные компоненты вектора dB от различных участков кольца скомпенсируют друг друга, поэтому нас будет интересовать только вертикальная составляющая вектора dB

Для всех участков кольца dL расстояния r до точки наблюдения одинаковы, также не изменяется и угол φ. Проинтегрируем (12) по dL,

С учетом того, что , а , получим

В центре кольца (z = 0) магнитная индукция равна

где nединичный вектор нормали к плоскости кольца.

Следует отметить, что в целом поле кольца с током существенно неоднородно (см. рис.11). Однако в середине витка это поле можно считать достаточно однородным.

Если в (13) ток I выразить через магнитный момент кольца pm=IS=πR 2 I, то поле вдоль оси кольца

При большом удалении от витка поле спадает, как 1/z 3 . По такому же закону убывает напряженность электрического поля, создаваемого электрическим диполем. Поведение витка с током в магнитном поле полностью повторяет поведение электрического диполя в электрическом поле. Также виток с током подобен постоянному магниту, у которого имеется два полюса – северный и южный (см. далее). Поэтому виток с током можно рассматривать, как магнитный диполь.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Определение магнитного момента витка с током

В 1820 году датский ученый Ганс Христиан Эрстед свершил выдающееся открытие – магнитное действие электрического тока. Эстафету исследований и открытий в области электромагнетизма подхватили французские ученые: Араго, Био, Савар, и, конечно же, Андре Мари Ампер.

Направление силовых линий магнитного поля

Эрстед обнаружил, что если проводник установить вертикально и вокруг него расположить небольшие магнитные стрелки на подставках, то при прохождении тока в проводнике, стрелки повернутся так, что полюс одной из них будет направлен на противоположный полюс другой. Если стрелки мысленно соединить линией, проходящей через полюсы, то линия окажется замкнутой окружностью. Это наблюдение позволяет делать вывод о вихревом характере магнитного поля вокруг проводника с током (рис. 1).

Магнитное поле вокруг проводника с током

Рис. 1. Магнитное поле вокруг проводника с током

Теперь посмотрим, что будет, если изменить направление тока. Стрелки по-прежнему образуют круг, но развернулись на 180 градусов. Значит, можно говорить о направлении вихрей, которые образуют магнитные линии.

Читайте также:  Индукционные электродвигатели переменного тока

Исследуя этот феномен, Ампер предложил считать за направление силовых линий направление от северного полюса магнита к южному полюсу. Это предложение позволяет связать между собой направление магнитных линий вокруг проводника с током и направление тока в проводнике.

Соединим нижний конец проводника с положительным полюсом источника (+), а верхний – с отрицательным (–). Таким образом, мы знаем направление тока в проводнике. Замкнем цепь. Обратим внимание, как расположились стрелки. Теперь, если обхватить проводник пальцами правой руки по линии, соединяющей северный полюс одной стрелки с южным полюсом другой стрелки, то отставленный вдоль проводника большой палец будет как раз указывать направление тока – от плюса к минусу.

Наверное, приблизительно так рассуждая, Андре-Мари Ампер предложил правило «правой руки» (рис. 2).

Если обхватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то направление обхвата проводника покажет направление линий магнитного поля.

Рис. 2. Правило правой руки

Еще один способ определения взаимосвязи направления тока и направления линий магнитного поля называется правилом буравчика (рис. 3).

Если ввинчивать буравчик по направлению тока в проводнике, то направление движения рукоятки буравчика укажет направление линий магнитного поля.

Рис. 3. Правило буравчика

Взаимодействие токов. Закон Ампера

Одним из следующих серьезных шагов Ампера было открытие взаимодействия двух параллельных проводников.

Ампер выяснил, что два параллельных проводника с током притягиваются, если токи в них направлены в одном направлении, и отталкиваются, если тоги направлены в разных направлениях (рис. 4).

Рис. 4. Взаимодействие параллельных проводников

Таким образом, гениальная догадка Ампера о том, что магнитные взаимодействия есть взаимодействия электрических токов, высказанная Ампером в первый же день знакомства с опытами Эрстеда, подтвердилась экспериментально.

Это открытие позволило Амперу изучить силу взаимодействия токов и вывести известный закон (закон Ампера). В наиболее простом случае он имеет вид:

,

Сила взаимодействия двух параллельных проводников с токами пропорциональна величинам токов в элементарных отрезках и обратно пропорциональна расстоянию между элементами проводников.

Закон Ампера в простом его виде для прямых однородных проводников позволяет установить единицу силы тока на основе прямых измерений. Действительно, измеряя силы взаимодействия проводников и зная расстояние между ними, мы можем точно определить величину тока в проводниках и таким образом установить ток в один ампер.

Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2·10 −7 ньютона.

В формуле коэффициент k – коэффициент пропорциональности, численное значение которого зависит от выбора системы единиц. В СИ этот коэффициент имеет следующее выражение: (здесь «мю нулевое» – это магнитная постоянная).

Магнитное поле кругового тока (виток с током)

Затем Ампер исследовал, как будет вести себя проводник, скрученный в кольцо – виток. Оказалось, что виток с током ведет себя подобно магнитной стрелке (рис. 5).

Рис. 5. Виток с током

Это значит, что на виток с током в магнитном поле, скажем, между двумя полюсами магнита, будет действовать момент сил, стремящийся развернуть виток с током так, чтобы его плоскость была перпендикулярна магнитным линиям. Опыт показывает, что угол разворота рамки с током зависит от величины тока в рамке и от самих магнитов, или силы магнитного поля. Следовательно, такой виток с током, или как говорят, круговой ток, можно использовать для анализа силовых свойств магнитного поля (рис. 6).

Читайте также:  Двигатели постоянного тока когда какое возбуждение применяется

Рис. 6. Рамка с током в магнитном поле

Вектор магнитной индукции

Разместим виток с током в пространстве между полюсами магнитов. Крутящий момент , действующий на виток с током, будет прямо пропорционален площади витка и величине тока, проходящего по витку, что следует из опытов. Получается, что отношение момента сил, действующих на виток, к произведению площади витка на величину тока остается величиной постоянной для данной пары магнитов.

Следовательно, величина, равная этому отношению, характеризует не виток с током, а силовые свойства той области пространства, где действует магнитное поле на виток с током.

Эта величина называется магнитной индукцией. Очевидно, это векторная величина. Вектор магнитной индукции является касательной к каждой точке магнитных линий (рис. 7).

Рис. 7. Вектор магнитной индукции

Размерность этой величины: – Ньютон делить на ампер, умноженный на метр. Её название – Тесла.

Вектор магнитной индукции – это силовая характеристика магнитного поля. Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке пространства. Виток с током ведет себя в магнитном поле подобно стрелке, следовательно, у самого витка с током есть свое магнитное поле. Направление вектора магнитной индукции вдоль оси витка можно определить по правилу правой руки.

Если четырьмя пальцами правой руки обхватить виток так, чтобы пальцы указывали направление тока в витке, то отставленный на 90 градусов большой палец укажет направление вектора магнитной индукции.

Величина вектора магнитной индукции в центре витка с током будет определяться исключительно величиной тока и размерами самого витка

.

В заключение рассмотрим систему из нескольких витков – катушку, или, как еще ее называют, соленоид (рис. 8).

Примечательно то, что внутри соленоида магнитные линии будут параллельными и прямыми линиями. Значит, магнитные линии будут совпадать с вектором магнитной индукции. При этом значение модуля вектора магнитной индукции внутри соленоида будет одинаковым. Такое поле, как мы помним из электростатики, называется однородным. Таким образом, внутри катушки с током, или, как говорят, соленоида, магнитное поле однородно.

Модуль вектора магнитной индукции будет зависеть не только от величины тока, но и от числа витков и длины соленоида .

Источник

Вещество в электростатическом поле

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы Á . Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка , , где S – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так: . А что такое ? Это вектор, направленный вдоль вектора нормали к плоскости витка . А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. Если dS – площадь треугольника, построенного на векторах и , то . Тогда мы пишем магнитный момент равняется . Значит,

( магнитный момент витка с током ) = ( сила тока ) ( площадь витка ) ( нормаль к витку ) 1) .

А теперь мы формулу (8.1) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы Á , тогда поле в точке на расстоянии х равно: ( ). Для круглого витка , . На прошлой лекции мы находили магнитное поле круглого витка с током, при эти формулы совпадают.

Читайте также:  Starline a94 ток потребления

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:

Источник



Магнитное поле кругового тока. Магнитный момент витка с током.

Рассмотрим поле, создаваемое током I, текущим по тонкому проводу, имеющему форму окружности радиуса R .

Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы перпендикулярны плоскостям, проходящим через соответствующие и . Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий вектор направлен вдоль оси кругового тока. Каждый из векторов вносит вклад равный , а взаимно уничтожаются. Но , , а т.к. угол между и α – прямой, то тогда получим

,

Подставив в и, проинтегрировав по всему контуру , получим выражение для нахождения магнитной индукции круговоготока:

,

При , получим магнитную индукцию в центре кругового тока:

,

Заметим, что в числителе – магнитный момент контура. Тогда, на большом расстоянии от контура, при , магнитную индукцию можно рассчитать по формуле:

,

Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Источник