Меню

Определить комплексы токов ветвей цепи

Определение комплексов действующих значений токов по методу контурных токов. Построение диаграммы напряжений и токов

Страницы работы

Содержание работы

1. Исходные данные. 3

2. ОПРЕДЕЛЕНИЕ КОМПЛЕКСОВ ДЕЙСТВУЮЩИХ ЗНАЧЕНИЙ ТОКОВ ПО МЕТОДУ КОНТУРНЫХ ТОКОВ.. 3

3. ОПРЕДЕЛЕНИЕ ПОКАЗАНИЯ ВАТТМЕТРОВ.. 6

4. БАЛАНС МОЩНОСТЕЙ.. 7

5. ПОСТРОЕНИЕ ДИАГРАММЫ НАПРЯЖЕНИЙ И ТОКОВ.. 8

  1. Исходные данные

2. ОПРЕДЕЛЕНИЕ КОМПЛЕКСОВ ДЕЙСТВУЮЩИХ ЗНАЧЕНИЙ ТОКОВ ПО МЕТОДУ КОНТУРНЫХ ТОКОВ

Введем контурные токи , :

Определим комплексные сопротивления ветвей:

Используя выражения (1), (2), (3) и (*) соответственно рассчитаем сопротивления ветвей:

Найдем комплексные напряжения источников ЭДС:

E1=E1e j ф 1 =159e j240 =159cos240+j159sin240=-79.5+j137.698 В,

E2=E2e j ф 3 =273e j228 =273cos228+j273sin228=-182.673-j202.879 В.

Запишем уравнения по методу контурных токов:

Определим собственные и взаимные сопротивления:

Определим контурные ЭДС:

С учетом выражения (4) составим матрицу сопротивлений и контурных ЭДС и найдем контурные токи в программном комплексе «Mathcad» :

Контурные токи равны:

I11=0.45+j2.5 A,

I22=-0.028-j1.524A.

Находим комплексы для действующих значений токов:

3. БАЛАНС МОЩНОСТЕЙ

Баланс сходится

4. ПОСТРОЕНИЕ ДИАГРАММЫ НАПРЯЖЕНИЙ И ТОКОВ

Топографическая диаграмма напряжений, совмещенная с векторной диаграммой токов

Масштаб тока 1:50

Похожие материалы

Информация о работе

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Решение. 1.Определяем комплексы сопротивлений всех ветвей электрической цепи:

1.Определяем комплексы сопротивлений всех ветвей электрической цепи:

Перевод алгебраической формы сопротивлений в показательную форму осуществлён с использованием расчёта модуля сопротивления по формуле (2), а расчёт углового сдвига между векторами напряжения и тока в ветвях – по формуле (3).

Все дальнейшие промежуточные расчёты следуют вести с преобразованием алгебраической формы в показательную форму и наоборот, чтобы при выборе арифметических действий всегда были исходные результаты расчётов под рукой.

2.Определяем комплекс полного сопротивления разветвлённого участка цепи

В приведённом расчёте после четвёртого равенства подробно представлен приём освобождения от мнимости в знаменателе с использованием умножения числителя и знаменателя дроби на сопряжённый комплекс относительно исходного в знаменателе данной дроби. Расчёт сопротивления разветвлённого участка реализовано по известной формуле параллельного соединения двух омических сопротивлений на постоянном токе с той лишь разницей, что вместо омических сопротивлений используются комплексы сопротивлений для переменного тока с обычными алгебраическими преобразованиями. Можно было расчёт комплексного сопротивления Z23 реализовать с отмеченными ранее рекомендациями, то есть с использованием показательной формы комплексных сопротивлений Z2 и Z3 , результат расчёта был бы аналогичен (это при желании можно проверить дополнительно). В данном случае был показан дополнительный вариант расчёта эквивалентного сопротивления по известной формуле для двух параллельно соединённых сопротивлений (для постоянного тока), но лишь с использованием комплексных сопротивлений заданных в алгебраической форме. Дополнительно к сказанному подробно показано, как можно освободиться от мнимости в знаменателе дроби.

Читайте также:  Таблица потребления тока телефоном

3.Определяем комплекс полного сопротивления всей электрической цепи:

Полученный результат расчёта окажется важнейшим для расчёта баланса мощностей, то есть в целом для проверки правильности проделанного расчёта данной задачи, а также для расчёта и анализа для данной цепи. По существу дела мы преобразовали исходную электрическую цепь к эквивалентной схеме, состоящей из эквивалентного активного сопротивления Rэкв, которое позволит определить величину потребляемой активной мощности Р исходной электрической цепью и эквивалентного реактивного сопротивления Хэкв, которое позволит определить величину реактивной мощности Q исходной электрической цепи (рис. 5).

4.По заданному вещественной частью подводимому к цепи комплексного напряжения и комплексу полного сопротивления Z определяем по закону Ома комплекс тока :

Определив узловое напряжение Z23, по закону Ома находим комплексы токов и в параллельных ветвях между узлами 2 и 3:

Перевод комплексных токов из показательной формы в алгебраическую производится через тригонометрическую форму. Например, для тока первой ветви вещественная часть получена перемножением модуля тока равного двум амперам на косинус угла равного 3,5 º . Аналогично рассчитана мнимая проекция тока в первой ветви: .

5.Проверка полученных токов по первому закону Кирхгофа для узла 2:

Пренебрегая погрешностью мнимой составляющей (менее 5%) первый закон Кирхгофа выполняется.

6.Определяем комплекс напряжения :

Проверяем с учётом арифметического округления равенство

7.Определяем комплекс полной мощности электрической цепи:

Р = 199,63 Вт, Q = 12,2 .

Таким образом, определены полная, активная и реактивная мощности, подведённые к данной цепи. Для проверки баланса мощностей определим мощность потребляемой электрической цепью. Для этого воспользуемся параметрами эквивалентной схемы замещения по рис. 5.

Подводимая активная мощность к электрической цепи из вне, отличается от активной мощности потребляемой всеми ветвями электрической цепи на 1%, реактивная на 1,6%, следовательно, баланс мощностей выполняется, а задача считается решённой, верно. Необходимо отметить, что потребляемая мощность электрической цепью может быть рассчитана на каждом потребителе энергии отдельно, после этого сложением всех однотипных видов мощностей проверен баланс мощности. Но при сложных конфигурациях электрических цепей с большим количеством энергопотребителей расчёт баланса мощностей становится громоздким, поэтому целесообразнее расчёт баланса мощностей проводить показанным способом.

Для построения векторной диаграммы необходимо выписать в комплексном виде все напряжения и токи в показательной форме. Выявить максимальные и минимальные значения модулей напряжений с токами и грамотно выбрать масштабы, чтобы недопустить слишком маленьких векторов (из-за неудобств анализа) и больших, выходящих за пределы избранного формата бумаги для векторной диаграммы. Затем для удобства нанести на бумагу начальную точку векторной диаграммы, из которой проводится горизонтальная вещественная ось для нанесения на неё вещественно заданного в вариантах комплекса напряжения или тока. Затем из начала координат провести все вектора с учётом их модулей и углов в масштабе на векторную диаграмму. При этом положительные углы векторов откладываются против часового вращения, а отрицательные по часовому вращению. Провести анализ сдвигов векторов напряжений и токов относительно друг друга на соответствие теории электрических цепей однофазного переменного тока и законам электротехники. С учётом изложенных рекомендаций векторная диаграмма для рассчитанной электрической цепи представлена на рис.6 и рассчитан косинус фи для данной цепи.

Источник

Символический (комплексный) метод расчета цепей переменного тока

ads

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3 + φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7 + φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11 + φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от значения 0 В до максимальных 311 В и обратно.

Читайте также:  От чего греется кабель от тока или напряжения

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Комплексное число на комплексной плоскости

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

действующее значение

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

Действующее значение напряжения

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

Показательная форма комплексного числа

2) тригонометрическая форма в виде

Тригонометрическая форма комплексного числа

3) алгебраическая форма

Алгебраическая форма комплексного числа

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду по следующим преобразованиям

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Схема с последовательным соединением элементов

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Схема с комплексными обозначениями

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

Закон ома в комплексной форме

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза φ = 0°, так как общее выражение для мгновенного значения напряжение вида при φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) полное сопротивление электрической цепи и его характер;
2) действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

      Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1. Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом, активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

Источник



Примеры расчета различных цепей символическим методом

date image2015-05-26
views image12819

facebook icon vkontakte icon twitter icon odnoklasniki icon

Пример 3.9. На рисунке 3.46, приведена электрическая цепь с одним источником питания, параметры которой соответственно равны: U = 100 (B), r1 = 9 (Ом), xL1 = 12 (Ом), r2 = 6 (Ом), xC2 = 8 (Ом), r3 = 10 (Ом). Требуется определить токи во всех ветвях электрической цепи символическим методом.

1. Подготавливаем схему для расчета комплексов токов.

1.1. Направляем напряжение источника питания по действительной оси, т.к. комплекс вектора напряжения на входе соответственно равен:

1.2. Формируем комплексные сопротивления ветвей:

1.3. Схема для определения комплексов тока имеет вид, представленный на рисунке 3.47.

2. Определяем комплексное входное сопротивление цепи.

Читайте также:  Недостатком тяговой сети постоянного тока является

2.1. Параллельно соединенную вторую и третью ветви, заменяем эквивалентной и определяем сопротивление :

2.2. Комплексное входное сопротивление цепи

3. Определяем комплексы токов.

3.1. Комплекс тока :

3.2. Определяем комплексы токов и .

3.2.1. Комплексное напряжение на зажимах второй и третьей ветви:

3.2.2. Комплекс тока :

3.2.3. Комплекс тока :

4. Проверяем рассчитанные комплексы токов, применяя первый закон Кирхгофа, согласно которому .

Полученный результат совпадает с рассчитанным значением комплекса тока . Следовательно .

Пример 3.10. На рисунке 3.48, представлена разветвленная электрическая цепь переменного тока, с параметрами (B), r1 = 6 (Ом), xL1 = 8 (Ом), r2 = 3 (Ом), xC2 = 4 (Ом), (A). Требуется определить токи во всех ветвях электрической цепи символическим методом.

1. Подготавливаем схему для расчета комплексов токов.

1.1. Формируем комплекс ЭДС и токов источников питания:

1.2. Формируем комплексные сопротивления ветвей:

1.3. Схема для определения комплексов тока имеет вид, представленный на рисунке 3.49.

2. Определим комплексы токов в ветвях методом контурных токов. Приведенная на рисунке 3.49 схема, имеет два контура. Второй контур включает в себя источник тока , поэтому контурный ток второго контура определен и равен току источника тока . Для определения комплексных токов ветвях, достаточно определить ток первого контура .

2.1. Составляем уравнения для определения контурного тока.

2.2. Подставляем числовые значения и рассчитываем контурный ток .

2.3. Определяем комплексные токи в ветвях.

2.3.1. Ток в первой ветви (А).

2.3.2. Ток во второй ветви

Пример 3.11. Рассмотрим расчет разветвленной цепи синусоидального тока с использованием различных методов (метод непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых потенциалов и др.).

На рисунке 3.50 приведена электрическая схема, с параметрами: (B), r1 = 12 (Ом), xL1 = 20 (Ом), xC1 = 11 (Ом), (B), r2 = 8 (Ом), xC2 = 6 (Ом), r3 = 4 (Ом), (B), r4 = 6 (Ом), xL4 = 8 (Ом), xC5 = 5 (Ом), xL6 = 6 (Ом). Требуется определить комплексные токи во всех ветвях электрической цепи различными методами.

1. Подготовим схему для расчета комплексов тока:

1.1. Формируем комплексы ЭДС источников питания:

1.2. Формируем комплексные сопротивления ветвей:

1.3. Вычертим схему для определения комплексов тока (рис. 3.51):

2. Осуществляем предварительный анализ схемы.

2.1. Количество ветвей – в = 6, количество узлов – y = 4. Выбираем положительное направление токов в ветвях (рис. 3.51).

2.2. Вычерчиваем граф схемы, в котором выделяем ветви дерева и ветви связи. Для данной схемы граф имеет вид, представленный на рисунке 3.52.

Ветвями дерева приняты ветви 6,5,3. Ветви связи (1,2,4) обозначены на схеме пунктирными линиями.

2.3. Используя граф схемы, формируем независимые (главные) контуры. При формировании первого независимого контура используем 1-ю ветвь связи, дополненную 5 и 6 ветвями дерева. Соответственно, второй главный контур состоит из ветви связи 2, дополненной 3 и 5 ветвями дерева; третий главный контур состоит из ветви связи 4, дополненной 3 и 6 ветвями дерева. Положительное направление обхода контура принимаем совпадающим с направлением тока в ветви связи.

3. Решаем задачу методом непосредственного применения законов Кирхгофа (рис. 3.52).

3.1. Составляем систему уравнений по законам Кирхгофа.

3.2. По 1-му закону Кирхгофа:

3.3. По 2-му закону Кирхгофа:

3.4. Подставляем числовые значения в полученную систему уравнений:

3.5. Решая данную систему уравнений, определяем токи в ветвях:

4. Решаем задачу методом контурных токов (рис. 3.53).

4.1. Составляем уравнения для определения контурных токов:

4.2. Подставляем числовые значения и решаем систему уравнений:

4.2.1. Контурные сопротивления в символической форме

Сумма сопротивлений, принадлежащих нескольким контурам

Контурные ЭДС (В);

4.2.2. После подстановки цифровых данных система имеет вид

4.2.3. Решая данную систему уравнений, определяем контурные токи:

4.2.4. Определяем токи в ветвях электрической цепи, приведенной на рисунке 3.53.

5. Решаем задачу методом узловых потенциалов (рис. 3.54).

Потенциал четвертого узла принимаем равным нулю: . Следовательно, необходимо определить потенциалы , , .

5.1. Составляем уравнения для определения потенциалов , , :

5.2. Подставляем числовые значения и решаем систему уравнений.

5.2.1. Полные проводимости ветвей в комплексной форме

5.2.2. Сумма проводимостей ветвей, подключенных к соответствующим узлам:

Сумма проводимостей, соединяющих различные узлы

Узловые токи (А),

5.3.2. После подстановки цифровых данных система имеет вид

5.4. Решая данную систему уравнений произвольным методом, определяем комплексные потенциалы:

5.5. Определяем токи в ветвях электрической цепи, приведенной на рис. 3.54.

6. Находим ток методом эквивалентного генератора.

6.1. Определяем напряжение холостого хода .

6.1.1. Удаляем из исходной схемы сопротивление и вычерчиваем схему активного двухполюсника (рис. 3.55).

6.1.2. Определяем токи в схеме активного двухполюсника (рис. 3.56) методом двух узлов.

Потенциал третьего узла принимаем равным нулю: . Следовательно, необходимо определить потенциал .

6.1.2.1. Составляем уравнение для определения потенциала :

6.1.2.2. Сумма проводимостей ветвей, подключенных к первому узлу:

6.1.2.3. После подстановки цифровых значений, определяем потенциал :

6.1.2.4. Определяем токи в ветвях электрической цепи, приведенной на рисунке 3.56.

6.1.3. Определяем по второму закону Кирхгофа из контура 1241

Подставляем известные значения

6.2. Определяем входное сопротивление пассивного двухполюсника.

6.2.1. Удаляем источники питания и вычерчиваем схему пассивного двухполюсника (рис. 3.57).

6.2.2. Треугольник сопротивлений , , преобразовываем в звезду сопротивлений (рис. 3.58,а):

6.2.3. Последовательно соединенные элементы и , и заменяем эквивалентными и соответственно (рис. 3.58,б):

6.2.4. Параллельно соединенные элементы и заменяем эквивалентным (рис. 3.58,б):

6.2.5. Определяем входное сопротивление (рис. 3.58,в):

Источник