Меню

Определить насколько изменится напряжение

Калькулятор напряжения – расчет по току, сопротивлению, мощности

Расчет электрического напряжения по току, сопротивлению, мощности с помощью калькулятора – рассчитайте напряжение онлайн и по формулам.

Используйте калькулятор напряжения для расчета вольтажа сети по известным значениям силы тока, сопротивления, мощности. Алгоритм программы выполняет подсчеты по формулам закона Ома для участка цепи. Чтобы получить результат, выберите необходимый тип операции, заполните поля и нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета напряжения

Электрическое напряжение (U) — это скалярная физическая величина, которая равна работе электрического поля по перемещению заряда из одной точки цепи к другой. Международная единица измерения — Вольт (В / V).

— Напряжение по току и сопротивлению: U = I × R
— Напряжение по току и мощности: U = P / I
— Напряжение по мощности и сопротивлению: U = √(P × R)

Источник



Параметры переменного напряжения

Содержание

  1. Среднее значение напряжения
  2. Средневыпрямленное значение напряжения
  3. Среднеквадратичное значение напряжения
  4. Как измерить среднеквадратичное значение напряжения

Как вы помните из предыдущей статьи, переменное напряжение – это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами.

Среднее значение напряжения

Среднее значение переменного напряжения Uср – это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.

Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком “минус”. А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.

То же самое касается и других сигналов, например, двухполярного меандра. Меандр – это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.

Средневыпрямленное значение напряжения

Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая “пробивает пол” берут не с отрицательным знаком, а с положительным.

Читайте также:  Формулы для определения падения напряжения

средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.

На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:

Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать ее по формуле:

Среднеквадратичное значение напряжения

Чаще всего используют среднеквадратичное значение напряжения или его еще по-другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже простым графиком не отделаешься. Среднеквадратичное значение – это значение постоянного напряжения, который, проходя через нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение обозначается так: RMS (rms) – root mean square.

Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды K a:

Вот некоторые значения коэффициента амплитуды K a для некоторых сигналов переменного напряжения:

Более точные значения 1,41 и 1,73 – это √2 и √3 соответственно.

Как измерить среднеквадратичное значение напряжения

Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS – как вы уже знаете – это среднеквадратическое значение. А что за буква “T” впереди? Думаю, вы помните, как раньше была мода на одно словечко: “тру”. “Она вся такая тру…”, “Ты тру или не тру?” и тд. Тру (true) – с англ. правильный, верный.

Так вот, T-RMS расшифровывается как True RMS – “правильное среднеквадратическое значение”. Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип “T-RMS”.

Проведем небольшой опыт. Давайте соберем вот такую схемку:

Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц

А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры

И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?

Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:

Читайте также:  Формула расчета провода по падению напряжения

Итак, смотрим нашу табличку и находим интересующий нас сигнал:

Для нас не важно, пробивает ли сигнал “пол” или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды K a= 1,73.

Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала

Проверяем нашим прибором, так ли оно на самом деле?

Супер! И в правду Тrue RMS.

Замеряем это же самое напряжение с помощью моего китайского мультиметра

Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.

Самый интересный сигнал в плане расчетов – это двуполярный меандр, ну тот есть тот, который “пробивает пол”.

Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.

Вот вам небольшая картинка, чтобы не путаться

  • Сред. – средневыпрямленное значение сигнала. Это и есть площадь под кривой
  • СКЗ – среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
  • Пик. – амплитудное значение сигнала
  • Пик-пик. – размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.

Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.

Источник

Падение напряжения на резисторе: формула расчета

Резистор — элемент в электрической цепи, служащий для снижения напряжения на выходе. Его название происходит от лат. «resisto» – «сопротивляюсь». Из этой статьи вы узнаете, как с помощью резисторов понижается напряжение, об их характеристиках, а также о том, как произвести расчёт резистора, гасящего ток для понижения напряжения.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Читайте также:  Силовой стабилизатор напряжения схемы

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Закон Ома для электрической цепи

В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:

Источник