Меню

Определить угол между проводником по которому проходит ток

Определить угол между проводником по которому проходит ток

Электромагнетизм
§ 22. Сила, действующая на проводник с током в магнитном поле

Условия задач и ссылки на решения по теме:

1 По двум параллельным прямым проводам длиной 2,5 м каждый, находящимся на расстоянии d=20 см друг от друга, текут одинаковые токи I=1 кА. Вычислить силу F взаимодействия токов.
РЕШЕНИЕ

2 Провод в виде тонкого полукольца радиусом R=10 см находится в однородном магнитном поле (B=50 мТл). По проводу течет ток I=10 A. Найти силу F, действующую на провод, если плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода находятся вне поля.
РЕШЕНИЕ

3 На проволочный виток радиусом 10 см, помещенный между полюсами магнита, действует максимальный механический момент Mmax=6,5 мкН. Сила тока I в витке равна 2 A. Определить магнитную индукцию B поля между полюсами магнита. Действием магнитного поля Земли пренебречь
РЕШЕНИЕ

4 Квадратная рамка со стороной длиной a=2 см, содержащая N=100 витков тонкого провода, подвешена на упругой нити, постоянная кручения C которой равна 10 мкН*м/град. Плоскость рамки совпадает с направлением линии индукции внешнего магнитного поля. Определить индукцию внешнего магнитного поля, если при пропускании по рамке тока I=1 А она повернулась на угол α=60°.
РЕШЕНИЕ

5 Плоский квадратный контур со стороной длиной a=10 см, по которому течет ток I=100 A, свободно установился в однородном магнитном поле индукцией B=1 Тл. Определить работу A, совершаемую внешними силами при повороте контура относительно оси, проходящей через середину его противоположных сторон, на угол: 1) φ1=90°; 2) φ2=3°. При повороте контура сила тока в нем поддерживается неизменной.
РЕШЕНИЕ

22.1 Прямой провод, по которому течет ток I=1 кА, расположен в однородном магнитном поле перпендикулярно линиям индукции. С какой силой F действует поле на отрезок провода длиной ℓ=1 м, если магнитная индукция В равна 1 Тл?
РЕШЕНИЕ

22.2 Прямой провод длиной 10 см, по которому течет ток I=20 A, находится в однородном магнитном поле с индукцией В=0,01 Тл. Найти угол α между направлениями вектора В и тока, если на провод действует сила F=10 мН.
РЕШЕНИЕ

22.3 Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи I=1 кА. Определить силу F, действующую на рамку, если ближайшая к проводу сторона рамки находится на расстоянии, равном ее длине.
РЕШЕНИЕ

22.4 Тонкий провод в виде дуги, составляющей треть кольца радиусом 15 см, находится в однородном магнитном поле (B =20 мТл). По проводу течет ток I=30 A. Плоскость, в которой лежит дуга, перпендикулярна линиям магнитной индукции, и подводящие провода находятся вне поля. Определить силу F, действующую на провод.
РЕШЕНИЕ

22.5 По тонкому проводу в виде кольца радиусом R=20 см течет ток I=100 A. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с индукцией В=20 мТл. Найти силу F, растягивающую кольцо.
РЕШЕНИЕ

22.6 Двухпроводная линия состоит из длинных параллельных прямых проводов, находящихся на расстоянии d=4мм друг от друга. По проводам текут одинаковые токи I=50 A. Определить силу взаимодействия токов, приходящуюся на единицу длины провода.
РЕШЕНИЕ

22.7 Шины генератора представляют собой две параллельные медные полосы длиной ℓ=2 м каждая, отстоящие друг от друга на расстоянии d=20 см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I=10 кА.
РЕШЕНИЕ

22.8 По двум параллельным проводам длиной ℓ= 1 м каждый текут одинаковые токи. Расстояние d между проводами равно 1 см. Токи взаимодействуют с силой F=1 мН. Найти силу тока I в проводах.
РЕШЕНИЕ

22.9 По трем параллельным прямым проводам, находящимся на одинаковом расстоянии a=10 см друг от друга, текут одинаковые токи I=100 A. В двух проводах направления токов совпадают. Вычислить силу F, действующую на отрезок длиной ℓ=1 м каждого провода.
РЕШЕНИЕ

22.10 По двум тонким проводам, изогнутым в виде кольца радиусом 10 см, текут одинаковые токи I = 10 А в каждом. Найти силу F взаимодействия этих колец, если плоскости, в которых лежат кольца, параллельны, а расстояние d между центрами колец равно 1 мм.
РЕШЕНИЕ

22.11 По двум одинаковым квадратным плоским контурам со стороной a=20 см текут токи I=10 А в каждом. Определить силу F взаимодействия контуров, если расстояние d между соответственными сторонами контуров равно 2 мм.
РЕШЕНИЕ

22.12 По витку радиусом r=5 см течет ток I = 10 A. Определить магнитный момент pm кругового тока.
РЕШЕНИЕ

22.13 Очень короткая катушка содержит N=1000 витков тонкого провода. Катушка имеет квадратное сечение со стороной длиной a=10 см. Найти магнитный момент рт катушки при силе тока I = 1 A.
РЕШЕНИЕ

22.14 Магнитный момент рт витка равен 0,2 Дж/Тл. Определить силу тока I в витке, если его диаметр d= 10 см.
РЕШЕНИЕ

22.15 Напряженность H магнитного поля в центре кругового витка равна 200 А/м. Магнитный момент pm витка равен 1 А*м2. Вычислить силу тока I в витке и радиус R витка.
РЕШЕНИЕ

22.16 По кольцу радиусом R течет ток. На оси кольца на расстоянии d=1 м от его плоскости магнитная индукция B=10 нТл. Определить магнитный момент pm кольца с током. Считать R много меньшим d.
РЕШЕНИЕ

22.17 Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить магнитный момент рт эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1 Тл.
РЕШЕНИЕ

22.18 Электрон в атоме водорода движется вокруг ядра по круговой орбите некоторого радиуса. Найти отношение магнитного момента pm эквивалентного кругового тока к моменту импульса L орбитального движения электрона. Заряд электрона и его массу считать известными. Указать направления векторов рm и L.
РЕШЕНИЕ

22.19 По тонкому стержню длиной 20 см равномерно распределен заряд Q=240 нКл. Стержень приведен во вращение с постоянной угловой скоростью ω = 10 рад/с относительно оси, перпендикулярной стержню и проходящей через его середину. Определить: 1) магнитный момент рm, обусловленный вращением заряженного стержня; 2) отношение магнитного момента к моменту импульса (pm/L), если стержень имеет массу m= 12 г.
РЕШЕНИЕ

22.20 Тонкое кольцо радиусом 10 см несет заряд 10 нКл. Кольцо равномерно вращается с частотой n=10 с-1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Найти: 1) магнитный момент рт кругового тока, создаваемого кольцом; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m кольца равна 10 г.
РЕШЕНИЕ

22.21 То же, что и в предыдущей задаче, но относительно оси, совпадающей с одним из диаметров кольца.
РЕШЕНИЕ

22.22 Диск радиусом R=10 см несет равномерно распределенный по поверхности заряд Q=0,2 мкКл. Диск равномерно вращается с частотой n=20 с-1 относительно оси, перпендикулярной плоскости диска и проходящей через его центр. Определить: 1) магнитный момент рт кругового тока, создаваемого диском; 2) отношение магнитного момента к моменту импульса (pm/L), если масса т диска равна 100 г.
РЕШЕНИЕ

22.23 Тонкостенная металлическая сфера радиусом R=10 см несет равномерно распределенный по ее поверхности заряд Q=3 мКл. Сфера равномерно вращается с угловой скоростью ω= 10 рад/с относительно оси, проходящей через центр сферы. Найти: 1) магнитный момент рт кругового тока, создаваемый вращением сферы; 2) отношение магнитного момента к моменту импульса (pm/L), если масса m сферы равна 100 г.
РЕШЕНИЕ

22.24 Сплошной шар радиусом R = 10см несет заряд Q=200 нКл, равномерно распределенный по объему. Шар вращается относительно оси, проходящей через центр шара, с угловой скоростью ω = 10 рад/с. Определить: 1) магнитный момент рт кругового тока, обусловленного вращением шара; 2) отношение магнитного момента к моменту импульса (pm/L), если масса т шара равна 10 кг.
РЕШЕНИЕ

22.25 Проволочный виток радиусом R=5 см находится в однородном магнитном иоле напряженностью H=2 кА/м. Плоскость витка образует угол a=60° с направлением ноля. По витку течет ток I=4 A. Найти механический момент M, действующий на виток.
РЕШЕНИЕ

22.26 Виток диаметром d=20 см может вращаться около вертикальной оси, совпадающей с одним из диаметров витка. Виток установили в плоскости магнитного меридиана и пустили по нему ток I=10 A. Найти механический момент М, который нужно приложить к витку, чтобы удержать его в начальном положении.
РЕШЕНИЕ

22.27 Рамка гальванометра длиной a=4 см и шириной b=1,5 см, содержащая N=200 витков тонкой проволоки, находится в магнитном поле с индукцией В=0,1 Тл. Плоскость рамки параллельна линиям индукции. Найти: 1) механический момент M, действующий на рамку, когда по витку течет ток I=1 мА; 2) магнитный момент pm рамки при этом токе.
РЕШЕНИЕ

22.28 Короткая катушка площадью S поперечного сечения, равной 150 см2, содержит N=200 витков провода, по которому течет ток I=4 A. Катушка помещена в однородное магнитное поле напряженностью Н=8 кА/м. Определить магнитный момент рm катушки, а также вращающий момент М, действующий на нее со стороны поля, если ось катушки составляет угол α=60с с линиями индукции.
РЕШЕНИЕ

22.29 Рамка гальванометра, содержащая 200 витков тонкого провода, подвешена на упругой нити. Площадь S рамки равна 1 см2. Нормаль к плоскости рамки перпендикулярна линиям магнитной индукции (В=5 мТл). Когда через гальванометр был пропущен ток I=2 мкА, то рамка повернулась на угол α=30°. Найти постоянную кручения С нити.
РЕШЕНИЕ

22.30 По квадратной рамке из тонкой проволоки массой 2 г пропущен ток 6 A. Рамка свободно подвешена за середину одной из сторон на неупругой нити. Определить период малых колебаний такой рамки в однородном магнитном поле с индукцией В=2 мТл. Затуханием колебаний пренебречь.
РЕШЕНИЕ

22.31 Тонкий провод в виде кольца массой m=3 г свободно подвешен на неупругой нити в однородном магнитном поле. По кольцу течет ток I=2 A. Период Т малых крутильных колебаний относительно вертикальной оси равен 1,2 c. Найти магнитную индукцию В поля.
РЕШЕНИЕ

Читайте также:  Параметры постоянного тока в физике

22.32 На оси контура с током, магнитный момент которого рm равен 10 мА*м2, находится другой такой же контур. Вектор магнитного момента второго контура перпендикулярен оси. Вычислить механический момент М, действующий на второй контур. Расстояние d между контурами равно 50 см. Размеры контуров малы по сравнению с расстоянием между ними.
РЕШЕНИЕ

22.33 Магнитное поле создано кольцевым проводником радиусом R=20 см, по которому течет ток I=100 A. На оси кольца расположено другое кольцо малых размеров с магнитным моментом рm= = 10 мА*м2. Плоскости колец параллельны, а расстояние d между центрами равно 1 см. Найти силу, действующую на малое кольцо.
РЕШЕНИЕ

22.34 Магнитное поле создано бесконечно длинным проводником с током I = 100 A. На расстоянии a=10 см от проводника находится точечный диполь, вектор магнитного момента (pm=1 мА*м2) которого лежит в одной плоскости с проводником и перпендикулярен ему. Определить силу F, действующую на магнитный диполь.
РЕШЕНИЕ

22.35 Определить степень неоднородности магнитного поля (dB/dx), если максимальная сила Fmax, действующая на точечный магнитный диполь, равна 1 мН. Магнитный момент pm точечного диполя равен 2 мА*м2.
РЕШЕНИЕ

22.36 Проволочный виток радиусом R=20 см расположен в плоскости магнитного меридиана. В центре витка установлен компас. Какой ток I течет по витку, если магнитная стрелка компаса отклонена на угол α=9° от плоскости магнитного меридиана
РЕШЕНИЕ

22.37 Определить число N витков катушки тангенс-гальванометра, при котором сила тока, текущего по обмотке, численно равна тангенсу угла отклонения магнитной стрелки, помещенной в центре обмотки? Радиус r катушки равен 25 см. Ось катушки перпендикулярна плоскости магнитного меридиана
РЕШЕНИЕ

22.38 Длинный прямой соленоид, содержащий 5 витков на каждый сантиметр длины, расположен перпендикулярно плоскости магнитного меридиана. Внутри соленоида, в его средней части, находится магнитная стрелка, установившаяся в магнитном поле Земли. Когда но соленоиду пустили ток, стрелка отклонилась на угол α=60°. Найти силу тока I
РЕШЕНИЕ

22.39 Короткий прямой магнит расположен перпендикулярно плоскости магнитного меридиана. На оси магнита на расстоянии r=50 см от его середины (которое много больше длины магнита) находится магнитная стрелка. Вычислить магнитный момент рт магнита, если стрелка отклонена на угол α=6° от плоскости магнитного меридиана
РЕШЕНИЕ

22.40 Конденсатор электроемкостью 50 мкФ заряжается от источника тока, ЭДС которой равна 80 B, и с помощью особого переключателя полностью разряжается 100 раз в секунду через обмотку тангенс-гальванометра, расположенного в плоскости магнитного меридиана. На какой угол α отклонится магнитная стрелка, находящаяся в центре тангенс-гальванометра, если его обмотка имеет N=10 витков радиусом r=25 см?
РЕШЕНИЕ

22.41 Магнитная стрелка, помещенная в центре кругового провода радиусом 10 см, образует угол 20 с вертикальной плоскостью, в которой находится провод. Когда по проводу пустили ток I=ЗА, то стрелка повернулась в таком направлении, что угол α увеличился. Определить угол поворота стрелки.
РЕШЕНИЕ

Источник

Круговой проводник с током

Возьмем проводник, согнутый по кругу в виде витка, и пропустим по нему ток (рис. 75). Из чертежа видно, что магнитные линии замыкаются вокруг проводника с током и имеют форму ок­ружностей. Магнитные линии с одной стороны входят в плоскость кругового проводника, с другой — выходят.

Направление поля круго­вого тока можно определить, пользуясь «правилом бурав­чика»

Буравчик нужно расположить по оси кругового тока перпендикулярно его плоскости. Если теперь вращать ручку буравчика по направлению тока в контуре, то поступательное движение буравчика покажет направление магнит­ного поля. Напряженность магнитного поля в центре витка с током определяется по формуле:

Закон Био-Савара-Лапласа (формулировка). Расчет напряженности магнитного поля прямолинейного проводника с током.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии , от контура магнитная индукция будет иметь вид:

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67).

Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле.

Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

При расчетах магнитных полей пользуются величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением:

Единица измерения напряженности магнитного поля ампер на метр (А/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

Закон Био-Савара-Лапласа (формулировка). Расчет напряженности магнитного поля на оси соленоида.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии , от контура магнитная индукция будет иметь вид:———————————————————————à

Соленоид – катушка индуктивности, выполненная в виде намотанного на цилиндрический каркас изолированного проводника, по которому течет электрический ток. Соленоид представляет собой систему круговых токов одинакового радиуса, имеющих общую ось в соответствии с рисунком 3.2-а.

ß—Соленоид и его магнитное поле

Если мысленно разрезать витки соленоида поперек, обозначить направление тока в них, как было указано выше, и определить направление магнитных индукционных линий по «правилу буравчика», то магнитное поле всего соленоида будет иметь такой вид, как показано на рисунке.

На оси бесконечно длинного соленоида, на каждой единице длины которого намотано n витков, напряженность поля определяется формулой: H = In

В том месте, где магнитные линии входят в соленоид, образуется южный полюс, где они выходят – северный полюс.

Для определения полюсов соленоида пользуются «правилом буравчика», применяя его следующим образом: если расположить буравчик вдоль оси соленоида и вращать его по направлению тока в витках соленоида, то поступательное движение буравчика покажет направление магнитного поля в соответствии с рисунком 3.3.


ßПрименение правила буравчика

Закон полного тока (формулировка). Расчет поля тороида.

Закон полного тока — линейный интеграл вектора напряженности магнитного поля, взятый по замкнутому контуру, равен полному (суммарному) электрическому току, проходящему через поверхность, ограниченную этим контуром или магнитодвижущей силе вдоль замкнутого контура равна полному току, охватываемому этим током.

Магнитное поле тороида — кольцевой катушки, у которой витки намотаны на сердечник, который имеет форму тора (рис. 2). Магнитное поле, как известно из опыта, сосредоточено внутри тороида, а вне его поле равно нулю.

В данном случае линии магнитной индукции, как следует из соображений симметрии, есть окружности, у которых центры расположены по оси тороида. В качестве контура возьмем одну такую окружность радиуса r. Тогда, используя теорему о циркуляции, , откуда следует, что магнитная индукция внутри тороида (в вакууме) :

,

где N — число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B•2πr = 0. Следовательно, что поле вне тороида отсутствует (что показывает и опыт).

Закон полного тока (формулировка). Расчет магнитного поля массивного проводника конечного радиуса с током.

Линейный интеграл по замкнутому контуру l от напряженности магнитного поля равен полному току, протекающему сквозь сечение, ограниченное этим контуром.

Н – напряженность магнитного поля в данной точке пространства;

dL – элемент длины замкнутого контура L;

α – угол между направлениями векторов H и dL ; – алгебраическая сумма токов, пронизывающих контур L.

Закон полного тока

Ток Iк, пронизывающий контур L считается положительным, если принятое направление обхода контура и направление этого тока связаны правилом правоходового винта (буравчика).

Токи Фуко (вихревые токи) — замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , они образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.
Читайте также:  Почему проводник проводит ток а диэлектрики нет

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник



35. Электродинамика Читать 0 мин.

35.339. Индукция и движение проводников

Магнитный поток, проходящий через площадь S равен:

Ф ― величина магнитного потока [Вб],

B ― индукция магнитного поля [Тл],

α ― угол между нормалью $\overrightarrow$ к площади контура и вектором индукции магнитного поля $\overrightarrow$.

Если вектор индукции магнитного поля $\overrightarrow$ перпендикулярен площади контура, то магнитный поток равен:

Максимальное значение потока будет тогда, когда косинус будет максимальным (cosα = 1), то есть угол между вектором $\overrightarrow$ и вектором нормали к пластинке равен 0°, чему соответствует картинка 3. Наименьшее же значение потока будет тогда, когда косинус будет равен нулю (cosα = 0), то есть угол между нормалью к пластинке и вектором индукции равен 90°, чему соответствует картинка 4.

Электромагнитная индукция ― явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через контур. Если контур разомкнут, то на его концах наблюдается разносность потенциалов, равная ЭДС индукции.

ЭДС электромагнитной индукции возникает только тогда, когда изменяется магнитный поток.

Закон Фарадея об электромагнитной индукции и гласит, что индуцируемая ЭДС прямо пропорциональна скорости изменения магнитного потока:

$\varepsilon_i $ ― ЭДС электромагнитной индукции [B],

$\frac<\Delta \text<Ф>><\Delta t>$ ― скорость изменения магнитного потока [Вб/с],

Ф ― изменение магнитного потока [Вб],

t ― время, за которое происходит это изменение [c].

Кроме того, ЭДС индукции равна производной магнитного потока по времени:

  • ― ЭДС электромагнитной индукции [B],
  • ― производная магнитного потока по времени [Вб/с].
Читайте также:  Примеры расчета тока однофазного короткого замыкания

Задача 1

Замкнутый контур площадью S из тонкой проволоки помещён в магнитное поле. Плоскость контура перпендикулярна вектору магнитной индукции поля. В контуре возникают колебания тока с амплитудой = 35 мА, если магнитная индукция поля меняется с течением времени в соответствии с формулой B = acos (bt), где a = 6 · 10-3Тл, b = 3500 c-1. Электрическое сопротивление контура R = 1,2 Ом. Чему равна площадь контура?

Решение:

Обратите внимание на величины, данные в условии. Они здесь совсем не такие, к которым вы привыкли, потому что не дано значение магнитного поля, а дана зависимость магнитного поля от времени. Посмотрим, как это скажется на решении задачи.

Поскольку магнитное поле, а вместе с ним и поток меняются, то будет возникать ЭДС индукции, именно это ЭДС и вызовет электрический ток, поэтому запишем закон электромагнитной индукции.

По закону электромагнитной индукции $\varepsilon_i = -\frac<\Delta \text<Ф>><\Delta t>$

ЭДС — это изменение магнитного потока за время. Ничего в определении ЭДС не сказано про это самое время. Дело в том, что изменение какой-то величины за небольшой промежуток времени называется производной по времени. То есть наше ЭДС, которое является изменением магнитного потока за небольшой промежуток времени, это просто производная магнитного потока по времени $\varepsilon_i = -\text<Ф>_t’$

И это очень важный момент, без которого мы не сможем решить такого рода задачу.

Теперь посчитаем ЭДС индукции.

Напишем, чему равен магнитный поток Ф = BS = acos (bt) · S.

ЭДС индукции — это производная магнитного потока по времени. Теперь придётся вспомнить немного математики. Множители “a” и “S” перед косинусом не зависят от времени, поэтому производная их не трогает, а вот у косинуса в скобках стоит зависимость от времени, поэтому именно от косинуса производную и нужно взять.

Обратите внимание на полученную формулу магнитного потока. В ней стоит просто множитель aS перед сложной функцией косинуса

Взяв производную от этой функции, получаем Ф´ = –abS · sin (bt). А теперь, раз мы знаем производную магнитного потока, значит, знаем и ЭДС индукции, потому что $\varepsilon_i = -\text<Ф>_t’$

Подставив сюда значение производной, получим $\varepsilon_i = -\text<Ф>_t’$ = abS · sin (bt).

Мы получили значение ЭДС. Кроме этого, мы знаем сопротивление и максимальную силу тока, поэтому запишем закон Ома.

По закону Ома $I = \frac<\varepsilon>$ , подставив сюда значение ЭДС, получаем $I = \frac$.

Мы получили зависимость силы тока от времени.

Из-за синуса, который стоит в этой формуле, ток постоянно меняет свое значение, то он становится больше, то меньше, поскольку синус меняет своё значение от -1 до 1.

В условии дано максимальное значение силы тока, которое протекает по контуру. Когда эта величина будет максимальной? В тот момент, когда синус будет максимальным, то есть равный единице. Поэтому запишем sin (bt) = 1.

Максимальное значение тока будет в тот момент, когда будет максимальным значение ЭДС индукции, то есть когда, $I_ = \frac$.

Отсюда можно легко выразить площадь контура $S = \fracR>$, подставив сюда все значения, получим $S = \fracR> = \frac <35\cdot 10^<-3>A\cdot 1,2\text<Ом>><6\cdot 10^<-3>\text <Тл>\cdot 35000c^<-1>> = 0,002\text<м>^2$

Ответ: 0,002

Как видно из формулы магнитного потока Ф = BScosα, изменение магнитного потока может быть вызвано разными факторами:

  • увеличением или уменьшением модуля индукции магнитного поля (т. е. величины $\frac<\Delta B><\Delta t>$);
  • изменением направления вектора магнитного поля (т. е. изменением угла α);
  • деформацией контура, причем такой деформацией, при которой изменяется площадь контура (т. е. изменением величины $\frac<\Delta S><\Delta t>$ );
  • изменением нескольких из этих величин одновременно.

Таким образом, изменение модуля или направление вектора магнитной индукции или площади контура неизбежно приводят к тому, что в контуре возникает электродвижущая сила.

Если нарисовать график зависимости магнитного потока, то он может выглядеть либо так: тогда поток не будет менятьсяи ЭДС не возникает.

Либо так, тогда будет меняться поток и возникать ЭДС:

Знак «минус» перед скоростью изменения магнитного потока в формуле отражает правило Ленца: индуцированный ток всегда направлен так, чтобы магнитное поле, которое он создает, препятствовало изменению магнитного потока.

Если магнитный поток, проходящий через площадь контура, уменьшается, то магнитное поле индуцированных токов будет стремиться его увеличить.

Если поток увеличиваетсямагнитное поле индуцированных токов будет стремиться его уменьшить.

Задача 2

Два проводящих кольца расположены относительно проводника с током в одной плоскости, как это показано на рисунке. В каком направлении будет индуцироваться ток в этих кольцах, если начать двигать их в направлении проводника?

Решение:

Первым делом необходимо понять, как вообще может возникать индуцированный ток, если даже магнитного поля нет?

Его направление мы можем определить по правилу правого винта. Отметим это на рисунке.

Теперь эти два проводника начинают двигать. Разве от этого меняется поток? Ведь площадь остаётся та же самая, угол между нормалью и вектором тоже не меняется. Однако, чем ближе к проводнику с током, тем сильней поле, а чем дальше от него, тем слабее! Поэтому, когда мы двигаем кольца к проводнику, мы увеличиваем поток, ведь ближе поле сильнее. Значит, будет появляться ток, а его направление можно определить по правилу Ленца. Что нам говорит правило Ленца?

Раз поток увеличивается, то по правилу Ленца ток будет индуцироваться так, чтобы уменьшить поток, то есть магнитное поле в левом кольце будет направлено от нас, а в правом ─ на нас. А значит, по правилу правого винта мы можем определить, что ток будет течь по часовой стрелке слева и против часовой стрелки справа.

Движение проводников

Если к концам проводника, движущегося в магнитном поле, подключить вольтметр, то прибор покажет наличие разности потенциалов на концах проводника. Таким образом, когда проводник перемещается в области с магнитным полем, в нем возникает электромагнитная движущая сила (ЭДС).

Согласно закону Лоренца, в проводнике, движущемся в магнитном поле, создается ЭДС $|\varepsilon_i| = Blv\sin\alpha$;

$\varepsilon_i$― ЭДС электромагнитной индукции [B],

B ― индукция магнитного поля [Тл],

v ― скорость движения проводника [м/с],

α ― угол между направлением вектора скорости $\overrightarrow$ и длиной проводника $\overrightarrow$ , если вектор индукции магнитного поля $\overrightarrow$перпендикулярен проводнику и вектору скорости его движения: $\overrightarrow \perp \overrightarrow, \overrightarrow \perp \overrightarrow$

Используя силу Лоренца, можно получить это определение ЭДС. Сила Лоренца ― это проявленное действие магнитного поля на заряженную частицу.

В проводнике присутствует большое количество свободных зарядов (именно это отличает проводники от диэлектриков), и на каждый из зарядов действует сила Лоренца, перемещая их по проводнику так, что в одной его части скапливается отрицательный заряд, а в другой, соответственно, положительный. Это распределение зарядов и является физической основой для возникновения электродвижущей силы.

На рисунке показано как сила Лоренца, действующая на каждый из зарядов проводника, создаёт ЭДС в проводнике. Если одиночный отрицательный заряд попадает в магнитное поле, направленное от нас, то, согласно правилу левой руки, направление его движения изменяется так, как показано на рисунке. Если в область с таким же магнитным полем входит проводник, суммарный заряд которого равен нулю, но внутри которого находятся электроны, способные свободно перемещаться в проводнике, то электроны стекаются в один конец проводника. Так как электроны переместились в один конец проводника, то этот конец приобретает отрицательный заряд, а противоположный ему ― положительный. Таким образом, в проводнике возникает разность потенциалов и электродвижущая сила.

В некоторых случаях удобно решать задачи, используя определение ЭДС через закон Лоренца (обычно это задачи о движении прямолинейного проводника в поле), в других ― через закон Фарадея.

В проводнике, движущемся в магнитном поле, образуется разность потенциалов U = lvBsinα;

U — разность потенциалов [В],

v — скорость движения проводника $\big[ \frac<\text<м>> \big]$

B — индукция магнитного поля [Тл],

α — угол между направлением скорости и длиной проводника.

В случае, если есть какой-то замкнутый контур, то ЭДС в нем возникает только тогда, когда меняется магнитный потокчерез этот контур. В случае же тонкого стержня, для которого нельзя применить понятия магнитного потока, потому что у него просто нет площади, ЭДС возникает при движении в постоянном магнитном поле.

В случае, если в задаче дана проводящая рамка или контур, для определения ЭДС (напряжения) используем формулу $\varepsilon_i = — \frac<\Delta \text<Ф>><\Delta t>$

В случае, если в задачи дан проводник, движущейся в поле, для определения ЭДС (напряжения) используем формулу $\varepsilon$ =U= lvBsinα.

Задача 3

В заштрихованной области на рисунке действует однородное магнитное поле, перпендикулярное плоскости рисунка с индукцией В = 0,1 Тл. Квадратную проволочную рамку, сопротивление которой 10 Ом и длина стороны 10 см, перемещают в этом поле в плоскости рисунка поступательно равномерно с некоторой скоростью υ. При попадании рамки в магнитное поле в положении 1 в ней возникает индукционный ток, равный 1 мА. Какова скорость движения рамки?

Решение:

Зная силу тока и сопротивление, что можно найти? Мы сможем найти напряжение, то есть ЭДС, а ЭДС, уже можно легко связать со скоростью движения рамки.

Составим цепочку. Мы знаем магнитное поле (В), длину стороны (a), сопротивление (R) и силу тока (I), а найти нужно скорость(v).

Зная ток и сопротивление, что сразу можно найти? Напряжение, то есть ЭДС, которое мы сможем найти по закону Ома.

А связать ЭДС с индукцией поля, стороной рамки и скоростью движения очень легко, воспользовавшись той формулой, которую мы получили в прошлой задаче.

Пройдёмся вдоль этой цепочки.

Запишем закон Ома $I = \frac<\varepsilon>$, подставив сюда формулу для ЭДС, которую мы получили в прошлой задаче, отбросив знак «минус» получим $I = \frac<\varepsilon> = \frac$отсюда выразим скорость, и, подставив все величины, получим $v = \frac = \frac <1\cdot 10^<-3>A\cdot 10\text<Ом>> <0,1 \text<Тл>\cdot 0,1 \text<м>> = 1 \frac<\text<м>>$

Источник