Метод узловых (потенциалов) напряжений
При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.
Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.
Метод узловых потенциалов примеры решения задач
Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.
Рис.1. Схема постоянного тока
Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.
Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.
В общем виде система имеет вид:
Использованные в этой системе уравнений буквенно-цифровые обозначения
имеют следующий смысл:
– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае
– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае
– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:
– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:
Аналогично находятся и остальные проводимости:
J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае
В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:
Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:
В результате получены следующие значения потенциалов в узлах цепи:
Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.
В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что
Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.
Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.
Рис.2. Моделирование в Multisim
Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.
Источник
1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)
1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)
В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).
Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.
Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.
Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).
Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.
Решение задач методом узловых потенциалов и методом двух узлов
Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.
Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)
φ 3 = φ 4 + E 2 = 200 B .
Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.
Рассматривая узел 1, получим
φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 = J + E 1 R 1 + R ′ 1
φ 1 ⋅ g 11 − φ 2 ⋅ g 12 = J + E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .
В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.
Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим
− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 = 0
− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .
Найдем собственную проводимость первого узла
g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R И Т + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 = 0,155 С м .
Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.
Собственная проводимость узла 2
g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 = 0,102 С м .
Взаимные проводимости между узлами
g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 = 0,09 С м ; g 21 = g 12 = 1 R 2 = 1 25 = 0,04 С м ; g 23 = 1 R 3 = 1 30 = 0,033 С м .
Подставив в уравнения известные величины, получим
Для решения этой системы используем метод определителей. Главный определитель системы
Δ = | 0,155 − 0,04 − 0,04 0,102 | = 0,01421.
Δ 1 = | 39 − 0,04 6,6 0,102 | = 4,242 ; Δ 2 = | 0,155 39 − 0,04 6,6 | = 2,583.
Находим потенциалы узлов
φ 1 = Δ 1 Δ = 4,242 0,01421 = 298,6 В ; φ 2 = Δ 2 Δ = 2,583 0,01421 = 181,8 В .
Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)
I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200 − 298,6 + 150 10 + 15 = 2,056 А .
В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.
Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)
I 1 = φ 3 − φ 1 R 6 = 200 − 298,6 20 = − 4,93 А ; I 2 = φ 1 − φ 2 R 2 = 298,6 − 181,8 25 = 4,67 А ; I 3 = φ 3 − φ 2 R 3 = 200 − 181,8 30 = 0,607 А ; I 4 = φ 2 − φ 4 R 4 = 181,8 − 0 35 = 5,194 А .
Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение
− I 7 + I 3 + I 1 + I 6 = 0.
I 7 = I 3 + I 1 + I 6 = 0,607 + 2,056 − 4,98 = − 2,317 A .
Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.
1 Находим напряжение между двумя узлами по методу двух узлов
U a b = φ a − φ b = E 1 ⋅ g 1 + J g 1 + g 2 + g 3 = 32 ⋅ 1 1 + 18 1 1 + 1 6 + 1 2 = 30 B .
При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус – если направлена от узла a к узлу b.
Аналогичное правило определяет и знаки токов источников тока.
2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)
I 1 = E 1 + φ b − φ a R 1 = E 1 − U a b R 1 = 32 − 30 1 = 2 А ; I 2 = U a b R 2 = 30 6 = 5 А ; I 3 = U a b R 3 = 30 2 = 15 А .
Правильность решения проверим по первому закону Кирхгофа
I 1 − I 2 + I 3 + J = 0 ; 2 − 5 − 15 + 18 = 0.
Источник
Метод узловых напряжений
Метод узловых напряжений заключается в определении на основании первого закона Кирхгофа потенциалов в узлах электрической цепи относительного некоторого базисного узла. Базисный узел в общем случае выбирается произвольно, потенциал этого узла принимается равным нулю. Разности потенциалов рассматриваемого и базисного узлов называется узловым напряжением.
На рис.29 представлена схема электрической цепи, содержащая пять ветвей и три узла. За базисный принят узел с индексом «0».
Узловое напряжение U10=j1-j0. Положительное напряжение узловых напряжений указывается стрелкой от рассматриваемого узла к базисному.
Рис.29. Иллюстрация к методу узловых напряжений.
Напряжение на ветвях цепи равно, очевидно, разности узловых напряжений концов данной ветви. Например, напряжение ветви 4 равно: U4=I4R4=U10-U20 (30)
Из формулы (30) видно, что, зная узловые напряжения, можно найти ток ветви.
Структуру уравнений получим, рассматривая схему рис.30.
Т.к. узел с индексом «0» принят за базисный, то его потенциал равен нулю. Узловые напряжения (потенциалы) узлов 1 и 2 – неизвестны.
Уравнения по первому закону Кирхгофа для 1 и 2 узлов соответственно записываются:
(31)
Узловое напряжение (32)
Отсюда (33,а)
Аналогично для оставшихся токов:
(33,б)
Выражения (33,а,б) подставляем в систему (31) и после некоторых арифметических преобразований получаем:
(34)
q12=q21=q4+q5 – взаимная проводимость ветви, соединяющей узлы 1 и 2.
Из приведенных выражений видно:
Собственная проводимость узла равна сумме проводимостей ветвей, сходящихся в данном узле.
Взаимная проводимость равна сумме проводимостей ветвей, соединяющих данные узлы.
Узловой ток (теоретическое понятие) – это алгебраическая сумма произведений Eiqi и Ji источников тока (если они есть) всех ветвей, примыкающих к рассматриваемому узлу. Слагаемое входит в выражение со знаком «+», если э.д.с. и источник тока направлены к узлу. В противном случае – ставится знак «-».
После введенных обозначений система (34) принимает вид:
(35)
Из формул (35) видно, что собственная проводимость входит в выражения со знаком «+», а взаимная проводимость – со знаком «-».
Для произвольной схемы, содержащей n+1 узлов, система уравнений по методу узловых напряжений имеет вид:
(36)
Число уравнений, составляемое по методу узловых напряжений, равно
где Nэ.д.с. – число идеальных источников э.д.с.
Пример: (общий случай)
Пример: (с идеальными э.д.с.)
Порядок расчета электрических цепей по методу узловых напряжений:
1. Выбираем произвольно базисный узел. Желательно нулевой потенциал представить тому узлу, где сходится большее количество ветвей. Если имеется ветвь, содержащая идеальную э.д.с., то базисный узел должен быть концом или началом этой ветви.
2. Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (36).
3. Решая данную систему, находят напряжения узлов относительно базиса.
4. Токи ветвей определяют по обобщенному закону Ома:
(38)
Следствие: Если схема содержит только два узла, то в соответствие с методом узловых напряжений (в отсутствие идеальных э.д.с.) составляется только одно уравнение.
Например, для схемы рис.30:
Формула (39) носит название метода двух узлов.
Рис.30. Иллюстрация к методу двух узлов.
Узловое напряжение по методу двух узлов равно:
(40)
Определить все токи методом узловых напряжений.
Т.к. электрическая цепь содержит три узла и не содержит ветвей с идеальными источниками э.д.с., то число уравнений, составляемых по методу узловых напряжений равно 2.
Узел 3 будем считать базисным.
Тогда
Где
В результате решения системы определяем U13=2,8 B; U23=-1,95 B.
Токи в ветвях определяем по закону Ома:
Метод наложения (суперпозиции).
Метод наложения основан на применении принципа наложения, который формулируется следующим образом:
Ток в любой ветви электрической цепи равен сумме токов, обусловленных действием каждого источника в отдельности, при отсутствии других источников.
Рассматриваемый принцип называют принципом независимого действия.
При действии только одного из источников напряжения предполагается, что э.д.с. всех остальных источников равны нулю, так же как равны нулю и токи всех источников тока. Отсутствие напряжения на зажимах источников напряжения равносильно короткому замыканию их зажимов. Отсутствие тока в ветви с источником тока равносильно разрыву этой ветви.
Если источник э.д.с. содержит внутреннее сопротивление, то, полагая э.д.с. равной нулю, следует оставлять в его ветви внутреннее сопротивление. Аналогично в случае источника тока с параллельной внутренней проводимостью, следует, разрывая ветвь источника (т.е. полагая J=0), оставлять включенной параллельную ветвь с внутренним сопротивлением.
Пусть в цепи действуют источники с параметрами E и J, I // n и I / n – токи n-ой ветви, создаваемые каждым из этих источников в отдельности. Искомый ток
Принцип суперпозиции применим к напряжениям, т.к. между током и напряжением рассматривается линейная зависимость (закон Ома); но не применим к мощности:
т.к. мощности – это квадратичные функции токов.
Определить все токи методом наложения.
1. Заменяем источник э.д.с. E короткозамкнутым участком (т.к. его rвн=0) (схема рис.2).
Т.к. конфигурация цепи изменилась, то в цепи рис.2 протекают токи отличные от токов цепи рис.1. Их называют первые частичные токи и обозначают со штрихом.
Т.к. схема упростилась, то токи можно рассчитать, применяя правило плеч. Схему цепи рис.2 более наглядно представим на рис.3.
2. Разорвем ветвь с источником тока J. Токи, протекающие в цепи рис.4 называют вторыми частичными токами и обозначают с двумя штрихами.
3. Искомые токи найдем как алгебраическую (т.е. с учетом направлений) сумму частичных токов:
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Метод узловых напряжений
Дата публикации: 12 января 2015 .
Категория: Статьи.
В практических задачах встречаются цепи, имеющие всего две узловые точки. Между узловыми точками может быть включено произвольное количество ветвей. Расчет таких цепей значительно упрощается, если пользоваться методом узлового напряжения.
Рассмотрим сущность этого метода. В данной статье решение задач методом узлового напряжения рассмотрены на примерах.
На рисунке 1 изображена разветвленная электрическая цепь с двумя узловыми точками А и Б, между которыми включены четыре параллельные ветви. Три первые ветви имеют источники электродвижущих сил (ЭДС) (генераторы) с ЭДС E1, E2 и E3.
Рисунок 1. Метод узлового напряжения
Последовательно с генераторами в этих ветвях включены сопротивления r1, r2 и r3 (к ним могут быть отнесены и внутренние сопротивления самих генераторов). В последней ветви включено сопротивление r4. Положительные направления токов в каждой ветви выбраны от точки Б к точке А. Поскольку в первых трех ветвях направление тока совпадало с направлением ЭДС источников электрической энергии, то последние работают в режиме генераторов. Если напряжение между узловыми точками А и Б обозначить U, то ток в первой ветви:
аналогично для остальных ветвей:
Применяя для узловой точки А первый закон Кирхгофа, будем иметь:
Заменив токи их выражениями, последнее уравнение записываем так:
Мы получили формулу узлового напряжения.
В числителе формулы узлового напряжения представлена алгебраическая сумма произведений ЭДС ветвей на проводимости этих ветвей. В знаменателе формулы дана сумма проводимостей всех ветвей. Если ЭДС какой-либо ветви имеет направление, обратное тому, которое указано на рисунке 1, то она входит в формулу для узлового напряжения со знаком минус. В общем виде формулу для узлового напряжения можно записать так:
Применяя формулу для узлового напряжения, решим следующий пример.
Пример 1. Для цепи, представленной на рисунке 1, даны ЭДС генераторов E1 = 110 В, E2 = 115 В, E3 = 120 В; внутреннее сопротивление генераторов r01 = 0,2 Ом, r02 = 0,1 Ом, r03 = 0,3 Ом. Сопротивление ветвей r1 = 2,3 Ом, r2 = 4,9 Ом, r3 = 4,7 Ом, r4 = 5 Ом. Определить токи в ветвях.
Расчет цепей методом узловых напряжений начнем с определения проводимости каждой ветви:
Находим узловое напряжение:
Определяем токи в ветвях:
Знак минус у тока I4 показывает, что действительное направление тока обратно тому, которое показано на рисунке 1.
Рассмотрим работу двух генераторов параллельного возбуждения с одинаковыми ЭДС (E1 = E2) и одинаковыми внутренними сопротивлениями (r01 = r02). Схема включения генераторов показана на рисунке 1. Пусть E1 = E2 = 110 В, r01 = r02 = 0,2 Ом. Сопротивление потребителя r3 = 1 Ом. Определить мощность, развиваемую генераторами.
Применяя формулу узлового напряжения, будем иметь:
Мощности, создаваемые генераторами:
Приведенный пример показывает, что при одинаковых ЭДС и одинаковых внутренних сопротивлениях генераторов мощности, отдаваемые каждым генератором в сеть, также равны.
Пусть теперь ЭДС второго генератора E2 стала равной 121 В.
Тогда узловое напряжение
Мощности, создаваемые генераторами:
Следовательно, при параллельной работе генераторов постоянного тока с одинаковым внутренним сопротивлением более загруженным окажется тот генератор, ЭДС которого больше.
Рассмотрим, наконец, случай, когда ЭДС параллельно работающих генераторов одинаковы, но внутренние сопротивления различны.
Пример 2. Дано: ЭДС генераторов E1 = E2 = 110 В, внутренние сопротивления генераторов r01 = 0,2 Ом, r02 = 0,25 Ом, сопротивление внешней части цепи r = 1 Ом. Определить токи генераторов.
Вычисляем узловое напряжение:
При параллельной работе генераторов постоянного тока с одинаковыми ЭДС, но с различными внутренними сопротивлениями более загруженным окажется тот генератор, который имеет меньшее внутреннее сопротивление.
Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.
Источник