Меню

Опыты подтверждающие магнитное действие тока

Магнитное поле. Действие магнитного поля на электрический заряд и опыты, иллюстрирующие это действие. Магнитная индукция

Если неподвижные электрические заряды создают вокруг себя электрическое поле, то движущиеся заряды создают, кроме того, магнитное поле.

Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Свойства магнитного поля:

1. магнитное поле действует только на подвижные заряды с определенной силой;

Магнитное поле порождается электрическим током (движущимися зарядами). 2. Магнитное поле порождается электрическим током (движущимися зарядами); 3. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды)

Магнитное поле существует реально, независимо от нас, от наших знаний о нем.

магнитная стрелка в магнитном полемагнитная стрелка в магнитном полемагнитная стрелка в магнитном поле

Нам известно, как ведет себя магнитная стрелка в магнитном поле, поворачиваясь в нем определенным образом. Магнитное поле ориентирует магнитную стрелку вдоль направления вектора магнитной индукции. За направление вектора магнитной индукции принимают направление, которое показывает северный полюс N магнитной стрелки, свободно устанавливающейся в магнитном поле.

правило буравчикаНаправление вектора магнитной индукции устанавливают с помощью правила буравчика : если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика указывает направление вектора магнитной индукции.

Определить направление вектора индукции магнитного поля Земли, к примеру, можно компасом, когда ориентируемся на местности. Магнитное поле не имеет источников.

Магнитное поле графически изображается в виде линий магнитной индукции. Линии магнитной индукции называются линии, касательные к которым в любой их точке совпадают с вектором В, в данной точке поля.

Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряженных частиц в проводнике. Магнитное поле является силовым полем. Си­ловой характеристикой магнитного поля называют магнитную индукцию (В).

Рассчитать магнитную индукцию можно по формуле: где F- сила, действующая со стороны магнитного поля на проводник с током ( H ); I — сила тока в проводнике ( A ); l — длина проводника ( м ). Единица измерения индукции магнитного поля в СИ: [ B ] = 1Тл ( тесла).

Магнитное поле является вихревым полем. Линии магнитной индукции прямого провода с током представляют со­бой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику.

Магнитное поле соленоида.

Магнитное поле соленоида.

Источник

Опыты подтверждающие магнитное действие тока

Вы будете перенаправлены на Автор24

Многие важные законы электродинамики установлены экспериментально. Рассмотрим некоторые из них.

Эксперименты Эрстеда

Эксперименты Эрстеда показали, что электрический ток создает магнитное поле. В 1820 году датский ученый проводил опыты, размещая магнитную стрелку параллельно проводу с током.

При следовании тока через проводник стрелка поворачивалась.

Данное открытие случайным не назовешь. Еще в самом начале века Эрстед задался целью исследовать вопрос: оказывает ли электрический ток действие на магнит.

Позднее М. Фарадей писал об Эрстеде: «Настойчивость, с которой он стремился к совей цели, была вознаграждена открытием нового факта, о существовании которого никто, кроме него, даже отдаленно не мог предполагать. ».

В опытах Эрстеда проявилось родство между магнетизмом и электричеством. Стало очевидным:

Готовые работы на аналогичную тему

  • что на неподвижные электрические заряды магнитная стрелка не реагирует;
  • перемещающиеся заряды (электрический ток) способны оказать влияние на магнитную стрелку.

Важным выводом из опытов Эрстеда стало то, что магнетизм связан не со статическими электрическими полями, а с электрическим током.

Эксперименты Эрстеда позволили найти новый тип взаимодействия электрических зарядов.

Эксперименты Ампера

В том же году, что и Эрстед, французский физик и математик А. М. Ампер установил, что два параллельных проводника с токами, взаимодействуют (притягиваются или отталкиваются).

Явление взаимодействия электрических токов было названо Ампером электродинамическим взаимодействием.

Основываясь на своих экспериментах, А. Ампер сделал вывод о том, что воздействие тока на магнит и магнитов друг с другом объясняется, если допустить, что внутри магнита постоянно циркулируют молекулярные круговые токи. При этом все явления в магнетизме можно объяснить взаимодействием перемещающихся зарядов, и никаких особенных магнитных зарядов в природе не существует.

В соответствии с теорией близкодействия каждый перемещающийся электрический заряд порождает вокруг себя магнитное поле. Это магнитное поле является непрерывным в пространстве, и оно оказывает действие на другие перемещающиеся электрические заряды.

Силы, возникающие при действии магнитного поля на проводник с током, назвали силами Ампера. Величина максимальной силы Ампера, действующей на прямой проводник с током равна:

где $I$ -сила тока в проводнике; $ B$ — величина магнитной индукции однородного поля; $l$ — длина проводника.

Существованием сил Ампера объясняется ориентирующее действие магнитного поля при внесении в него рамки с током.

Читайте также:  Конденсаторы для импульсного переменного тока

Эксперимент по обнаружению силовых линий магнитного поля

Магнитные поля можно характеризовать при помощи вектора индукции магнитного поля ($\vec B$). Для визуализации картины, описывающей поля используют понятие силовых линий.

Силовыми линиями магнитного поля (линиями магнитной индукции) называют кривые, в каждой точке к которым, вектор $\vec B$ является касательной.

Картину силовых линий магнитного поля можно продемонстрировать на простом опыте.

  1. Прямой проводник с током пропустить сквозь отверстие, например, в картоне.
  2. Вокруг проводника на картоне насыпать железные опилки.
  3. Пропустить по проводнику ток.
  4. Опилки выстроятся по силовым линиям магнитного поля, образовав концентрические окружности, с центром на оси провода.

Изменяя форму проводника, можно увидеть, что картина «нарисованная» железными опилками будет иная.

Эксперименты М. Фарадея

Если движущиеся электрические заряды создают магнитное поле, то нужно получить ответ на следующий вопрос: «Не может ли магнитное поле порождать электрический ток?». Этот вопрос занимал физиков знакомых с экспериментами Эрстеда вплоть до 1831 года. В этот год М. Фарадей сделал свое фундаментальное открытие. Он обнаружил явление электромагнитной индукции.

Причина того, что данный вопрос долго не могли решить: сложно было увидеть, что только переменное магнитное поле способно возбуждать электрический ток.

Фарадей провел следующий эксперимент. На широкую катушку из дерева он намотал две проволоки (витки одной были расположены между витками другой). Витки проволок были изолированы друг от друга. Одну спираль ученый соединил с гальванометром, другую с источником тока. Замыкая цепь, он увидел, что в этот момент через гальванометр проходил ток.

Аналогичная ситуация возникала при размыкании исследуемой цепи. При постоянном течении тока никаких индукционных токов через гальванометр обнаружено не было.

Так, вначале была открыта индукция при размыкании и замыкании цепи в неподвижных (по отношению друг к другу) проводниках.

Далее, Фарадей экспериментально показал, что ток индукции появляется при перемещении катушек относительно друг друга. Ученому были известны работы Ампера, и он представлял магнит, как систему молекулярных микротоков.

17 октября 1831 года в своем лабораторном журнале Фарадей сделал запись о том, что им был обнаружен ток индукции в катушке, когда он вдвигал (выдвигал) в нее постоянный магнит. За месяц ученый выявил почти все значимые характеристики явления электромагнитной индукции.

И так, в замкнутом проводящем контуре появляется индукционный ток если:

  • контур неподвижен (или движется) в изменяющемся магнитном поле;
  • контур перемещается в постоянном магнитном поле;

самое главное, чтобы количество силовых линий магнитного поля, которые пронизывает, рассматриваемый контур изменялось.

Появление тока индукции означает, возникает электродвижущая сила (ЭДС), названная ЭДС индукции.

В математическом виде закон, описывающий электромагнитную индукцию, представляют в виде:

где $Ɛ_i$ — электродвижущая сила индукции; $Ф$ — магнитный поток (поток магнитной индукции)

Генератор Фарадея

На основе своего открытия электромагнитной индукции ученый создал первую модель генератора электрического тока, который преобразовывал энергию механического вращения в электричество.

Основными элементами данного генератора стали:

  • Медный диск большой массы.
  • Сильный магнит.

Диск совершал вращения между полюсами магнита. Ось и край диска Фарадей соединил с гальванометром. Приводя диск во вращение, он увидел, что стрелка гальванометра отклоняется.

Индукционный ток получался очень слабым, но предложенный принцип в дальнейшем был положен в основу создания мощных генераторов.

Источник

Билет 15. 1.Магнитное поле. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие

1.Магнитное поле. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие.

В 1820 г. датский физик Эрстед обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее (рис. 27). В том же году французский физик Ампер установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение, если ток течет по ним в одном направлении, и отталкивание, если токи текут в разных направлениях (рис. 28). Явление взаимодействия токов Ампер назвал электродинамическим взаимодействием. Магнитное взаимодействие движущихся электрических зарядов, согласно представлениям теории близкодействия, объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле. Магнитное поле — особый вид материи, который возникает в пространстве вокруг любого переменного электрического поля.

С современной точки зрения в природе существует совокупность двух полей — электрического и магнитного — это электромагнитное поле, оно представляет собой особый вид материи, т. е. существует объективно, независимо от нашего сознания. Магнитное поле всегда порождается переменным электрическим, и наоборот, переменное магнитное поле всегда порождает переменное электрическое

Читайте также:  Токовые характеристики электроподвижного состава постоянного тока

поле. Электрическое поле, вообще говоря, можно рассматривать отдельно от магнитного, так как носителями его являются частицы — электроны и протоны. Магнитное поле без электрического не существует, так как носителей магнитного поля нет. Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряженных частиц в проводнике.

Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В). Магнитная индукция — это векторная физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. В = F/IL Единичный элемент тока — это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции является тесла. 1 Тл = 1 Н/А • м. Магнитная индукция всегда порождается в плоскости под углом 90° к электрическому полю. Вокруг проводника с током магнитное поле также существует в перпендикулярной проводнику плоскости.

Магнитное поле является вихревым полем. Для графического изображения магнитных полей вводятся силовые линии, или линии индукции, — это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу

буравчика. Если буравчик ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением силовых линий. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику (рис. 29).

Как установил Ампер, на проводник с током, помещенный в магнитное поле, действует сила. Сила, действующая со стороны магнитного поля на проводник с током, прямо пропорциональна силе тока, длине проводника в магнитном поле и перпендикулярной составляющей вектора магнитной индукции. Это и есть формулировка закона Ампера, который записывается так: Fa = ILВ sin a. Направление силы Ампера определяют по правилу левой руки. Если левую руку расположить так, чтобы четыре пальца показывали направление тока, перпендикулярная составляющая вектора магнитной индукции (В = В sin а) входила в ладонь, то отогнутый на 90° большой палец покажет направление силы Ампера (рис. 30).

Источник



Магнитное действие тока. Опыт Эрстеда

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались показать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнито-статических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Магнитное действие тока. Опыт Эрстеда

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761—1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803—1869), Пьетро Конфильякки (1777—1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,— это обычное электростатическое действие.

Магнитное действие тока. Опыт ЭрстедаКогда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam», датский физик Ганс Христиан Эрстед (1777—1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь-долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа.

Читайте также:  Ток заряда акб бесперебойника

В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрё-rimentale». В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари <1797—1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

Источник