Меню

От чего зависит амплитуда тока в цепи

Прописные истины для новичков.

Как рассчитать шунт для амперметра?
Почему, я намотал вторичную обмотку на 12 вольт, а блок питания у меня выдаёт 16 вольт?.
Как измерить, какую мощность выдаёт усилитель низкой частоты?
Такие вопросы порой часто возникают от новичков радиолюбителей. Кратко напомним им, чем нужно руководствоваться в своей практической деятельности.

Закон Ома.

Основным законом, которым руководствуются радиолюбители — является Закон Ома..
Георг Симон ОМ
Georg Simon Ohm, 1787–1854
Немецкий физик. Родился в Эрлангене 16 марта в 1787 году (по другим источникам он родился в 1789-м). Окончил местный университет. Преподавал математику и естественные науки. В академических кругах его признали достаточно поздно. В 1849 году стал профессором Мюнхенского университета, хотя уже в 1827 году он опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.
Георг Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, на который не действуют сторонние силы), пропорционально напряжению U на концах проводника.
I = U/R, где R — электрическое сопротивление проводника.
Уравнение это выражает закон Ома для участка цепи (не содержащего источника тока). Формулировка этого закона следующая:
Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорционально его сопротивлению.
Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого. Сопротивление проводника в 1 Ом будет в том случае, если при протекающем по нему токе в 1 Ампер, падение напряжения на нём будет 1 Вольт.
Так же при прохождении тока по проводнику, на нём выделяется мощность(он нагревается), и чем больше протекающий по нему ток, тем больше выделяемая на нём мощность.
Как Вы должны знать U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока в Ваттах.
Вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе.
Из всего этого вытекают следующие формулы для расчётов тока, напряжения, сопротивления, мощности.
Величины, проставляемые в этих формулах; напряжение в вольтах, сопротивление в омах, ток в амперах, мощность в ваттах.

Последняя формула определяет мощность тока и выведена на основании практических опытов, проделанных в 1841 году Д. П. Джоулем и независимо от него в 1842 году, опытами Э. Х. Ленца. Называется Законом Джоуля — Ленца. Звучит так;

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка.

Для определения всех этих величин, есть очень интересная диаграмма (таблица), где отражены все эти формулы.
В центре искомые величины, а в секторах с соответствующими цветами — варианты решений в зависимости от известных величин.

Имеется ещё более упрощённая диаграмма для определения величин, исходя из закона Ома. Называется в простонародье — треугольник Ома.
Выглядит она следующим образом:

В этом треугольнике Ома, нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

I = <\varepsilon \over <R+r data-lazy-src=

На рисунке выше, на графиках изображены диаграммы постоянного (а), и переменного (б) тока.
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
В течение одного периода своего изменения,ток дважды достигает максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Действующее (эффективное) и амплитудное значение переменного синусоидального тока (напряжения).

Переменный синусоидальный ток в течение периода имеет различные мгновенные значения. Возникает вопрос, как же его измерять? Для его измерения и введено понятие — «Действующее (или эффективное) значение» переменного тока.

Что же такое действующее (или эффективное) и амплитудное значение переменного тока?
Как Вам попроще объяснить, чтобы было понятно.
Действующее (эффективное) значение переменного тока равно такому постоянному току, который, проходя через то же сопротивление, что и переменный ток, за то же время, выделяет такое же количество энергии.
То есть если к какой либо активной нагрузке (нагревательный элемент, лампа накаливания, резистор и т.д.) подключить переменный ток, который за определённый промежуток времени (например 10 секунд) выделит на активной нагрузке то-же количество энергии, тепла на нагревательном элементе, резисторе, или разогреет спираль лампы накаливания до точно такой же светоотдачи, что и постоянный ток какой-то определённой величины за тот же промежуток времени (тоже 10 секунд) — то тогда действующее (эффективное) значение такого переменного тока будет равняться величине постоянного тока.

Все электроизмерительные приборы (амперметры, вольтметры), отградуированы для измерения действующего значения синусоидального тока или напряжения.

Что такое «Амплитудное значение» переменного тока?
Если объяснять попроще, то это самое максимальное значение (величина) синусоидального тока на самом пике (максимуме) синусоиды.
Амплитудное значение переменного тока можно измерить электронно — лучевым осциллографом, так как все осциллографы откалиброваны на измерение амплитудных значений.

Поскольку действующее значение переменного синусоидального тока пропорционально квадратному корню из площади, то оно получается в 1,41 раза меньше его амплитудного значения.
Проще говоря — если измерить величину переменного тока (напряжения) электроизмерительными приборами, отградуированными для измерения переменного синусоидального тока (напряжения), то есть например замерить величину переменного напряжения на вторичной обмотке трансформатора, — то амплитудное значение напряжения на этой обмотке будет соответственно в 1,41 раз больше замеренного.
Это справедливо только для переменного синусоидального тока (напряжения).

Все конденсаторы в выпрямительных фильтрах соответственно заряжаются до величины амплитудного значения.

Можно посчитать, что при действующем напряжении сети 220 В, амплитудное его значение будет составлять 310 вольт (220 помножить на 1,41).

Отсюда вытекает, что если собрать выпрямитель переменного действующего напряжения 220 вольт, то конденсаторы фильтра необходимо применять на рабочее напряжение не менее чем на 350 вольт, так как они заряжаются до амплитудного (максимального) значения переменного напряжения, а ещё лучше не менее 400 вольт, для обеспечения надёжности работы выпрямителя.

Для действующего значения переменного синусоидального напряжения (тока) — справедливы формулы для расчётов сопротивлений, мощности, действующих токов и напряжений — приведённые выше в Законе Ома для постоянного тока.

Ответим на вопросы в начале статьи;

Как рассчитать шунт для амперметра?
Большинство отечественных измерительных головок для амперметров, рассчитываются на полное отклонение при подведении к ним напряжения в 75 мВ (0,075 вольта). У них на шкале имеется надпись «НШ — 75 мВ», или «Наружный шунт 75 мв», или что-то подобное.
Нам стало известно две величины, а именно — необходимый нам ток полного отклонения и напряжение полного отклонения измерительной головки.
Например, нам нужно рассчитать шунт на 20 ампер. По Закону Ома 0,075 делим на 20 = 0,00375 Ом.
Изготовить такой шунт можно из медной проволоки, посмотрев её удельное сопротивление по таблице ЗДЕСЬ . Только необходимо брать проволоку, диаметром желательно не менее 1,5 мм, так как шунт при большом токе будет греться, и показания прибора будет изменяться (при нагреве проволоки увеличится её внутреннее сопротивление).

Почему из 12 вольт переменного напряжения, стало около 16 вольт постоянного — надеюсь Вам стало понятно. У переменного напряжения 12 вольт (действующее его значение) — амплитудное значение будет в 1,41 раз больше, то есть 16,92 вольта, минус около вольта падение напряжения на диодах. В итоге получается около 16 вольт — до которых и заряжаются электролитические конденсаторы фильтра.

Как правильно измерить мощность УНЧ?
Давайте для начала вспомним теорию.
Выходная мощность усилителей НЧ измеряется на синусоидальном сигнале. У идеального двухтактного выходного каскада, максимальное амплитудное значение синусоидального сигнала на выходе может приблизиться к величине равной половине напряжения источника питания.
У каскада по мостовой схеме, выходное напряжение может приблизиться к величине напряжения источника питания.
Говоря другими словами, у автомобильной магнитолы при напряжении питания 13,5 вольт, для двухтактного выходного каскада максимальное выходное напряжение (синус) будет 6,5 вольт, а его действующее значение 4,6 вольта, для мостовой схемы соответственно 13 В. и 9,2 вольта.
Возьмём минимальную нагрузку для этих усилителей 2 Ома, соответственно максимальная выходная мощность (исходя из Закона Джоуля — Ленца) для первой магнитолы, которую она выдаст теоретически — будет 10,6 ватта, для второй — 42,3 ватта (это для нагрузки 2 Ома). На практике не более 10 и не более 40, или и того меньше. Для 4-х Ом соответственно ещё в два раза меньше. Я не говорю уже об искажениях, здесь мы просто измеряем максимальную выходную мощность.

В бытовых условиях измерять выходной сигнала усилителя (при подаче на вход синусоидального сигнала), лучше обычными «цешками» или бытовыми «цифровиками», так как они сразу измеряют действующее значение синусоидального сигнала. На выход усилителя лучше включать при замерах эквивалент нагрузки, то есть сопротивления с мощностью рассеивания, не менее максимально расчётной мощности усилителя, и с сопротивлением, равному сопротивлению предполагаемой нагрузки (это, что-бы не раздражать себя и соседей звуками во время замеров). Дальше, зная максимальное выходное напряжение и сопротивление нагрузки, рассчитываем мощность по вышеприведённым формулам, то есть напряжение в квадрате делённое на сопротивление нагрузки.
Так, что если Вы в магазине увидите подобный аппарат, и продавец Вас будет уверять, что на канал он выдаёт по 60-80 ватт — это развод, рекламный ход и т.д., если только для питания этого усилителя не применяется повышающий преобразователь.

Источник

От чего зависит амплитуда тока в цепи

§ 50. Основные величины, характеризующие переменный ток

Переменная э. д. с., переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом. Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э. д. с. совершается за 1/50 сек, то период этой э. д. с. равен 1/50 сек.
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой. Частота обозначается буквой f и измеряется в герцах (гц). При измерении больших частот пользуются единицами килогерц (кгц) и мегагерц (Мгц); 1 кгц = 1000 гц, 1 Мгц = 1000 кгц, 1 Мгц = 1 000 000 гц = 10 6 гц. Чем больше частота переменного тока, тем короче период. Таким образом, частота — величина, обратная периоду.

Пример. Длительность одного периода переменного тока равна 1/500 сек. Определить частоту тока.
Решение . Одно полное изменение переменного тока происходит за 1/500 сек. Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота

Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.

Пример. Частота тока равна 2000 гц (2 кгц). Определить период этого переменного тока.
Решение . За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока — один период совершается за 1/2000 долю секунды. Но основании этого период

Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан. (1 рад = 57° 17′ 44″; π = 3,14.) Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду

Соответственно угловая скорость вращения этого витка выражается в рад/сек и определяется отношением Эта величина называется угловой частотой и обозначается буквой ω.
Таким образом,

Так как частота переменного тока то, подставляя это значение f в выражение угловой частоты, получим:

Угловая частота ω, выраженная в рад/сек, больше частоты тока f, выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц, то угловая частота

ω = 2πf = 2 · 3,14 · 50 = 314 рад/сек

В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц. В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.
На рис. 51 видно, что переменная э. д. с. достигает своего значения два раза за один период.

Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, но и в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением r ом протекает переменный электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорционально максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

Em = E · 1,41; Um = U · 1,41; Im = I · 1,41; (55)

Пример. Вольтметр, подключенный к зажимам цепи, показывает действующее напряжение U = 127 в. Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение . Максимальное значение напряжения больше действующего в раз, поэтому

Um = U · = 127 · 1,41 = 179,07 в

Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.

Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э. д. с., напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, как меняется э. д. с., т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э. д. с. до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На рис. 52 показаны моменты вращения двух проводников в магнитном поле и графики изменения э. д. с. в проводах. Провод 1 и провод 2 смещены на угол φ = 90°. При пересечении магнитного потока в каждом из проводов возникает переменная э. д. с. Когда в проводе 2 электродвижущая сила равна нулю, в проводе 1 она будет максимальной. В проводе 2 э. д. с. постепенно увеличивается и достигает максимального значения в момент t1, а в проводе 1 индуктируемая э. д. с. постепенно убывает и в этот же момент времени равна нулю. Таким образом, индуктируемые в проводах э. д. с. не совпадают по фазе, а сдвинуты одна относительно другой по фазе на 1/4 периода или на угол φ = 90°. Кроме того, э. д. с. в проводе 1 раньше достигает максимума, чем э. д. с. в проводе 2, и поэтому считают, что электродвижущая сила е1 опережает по фазе э. д. с. е2 или э. д. с. е2 отстает по фазе от э. д. с. е1. При расчетах цепей переменного тока важное практическое значение имеет сдвиг фаз между переменными напряжением и током.

Источник

Основные параметры переменного тока: период, частота, фаза, амплитуда, гармонические колебания

Переменный ток — электрический ток, направление и сила которого изменяются периодически. Так как обычно сила переменного тока изменяется по синусоидальному закону, то переменный ток представляет собой синусоидальные колебания напряжения и силы тока.

Поэтому к переменному току применимо все то, что относится к синусоидальным электрическим колебаниям. Синусоидальные колебания — колебания, при которых колеблющаяся величина изменяется по закону синуса. В данной статье поговорим о параметрах переменного тока.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

ВЛЭП

Далее рассмотрим все эти параметры по отдельности и во взаимосвязи.

Период — время, в течение которого система, совершающая колебания, проходит через все промежуточные состояния и нале снова возвращается к исходному.

Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.

Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.

По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.

Угловая частота — число колебаний, совершаемых за 2пи сек.

За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:

Пользоваться числом колебаний на 2пи сек. (а не за 1 сек.) удобно потому, что в формулах, выражающих закон изменения напряжений и токов при гармонических колебаниях, выражающих индуктивное или емкостное сопротивление переменному току, и во многих других случаях частота колебаний n фигурируют вместе с множителем 2пи.

Фаза — состояние, стадия периодическою процесса. Более определенный смысл имеет понятие фаза в случае синусоидальных колебаний. На практике обычно играет роль не фаза сама по себе, а сдвиг фаз между какими-либо двумя периодическими процессами.

В данном случае под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе измеряется в радианах, долях периода, в градусах.

Амплитуда Uм и Iм

Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Амплитуда — наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Строго говоря, термин амплитуда относится только к синусоидальным колебаниям, но его обычно (не вполне правильно) применяют в указанном выше смысле ко всяким колебаниям.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Гармонические колебания — колебания, в которых колеблющаяся величина, например напряжение в электрической цепи, меняется во времени по гармоническому синусоидальному или косинусоидальному закону. Графически представляются кривой — синусоидой.

Реальные процессы могут лишь приближенно быть гармоническими колебаниями. Однако если колебания отражают наиболее характерные черты процесса, то такой процесс считают гармоническими, что существенно облегчает решение многих физических и технических задач.

Движения, близкие к гармоническим колебаниям, совершаются в различных системах: механических (колебания маятника), акустических (колебания столба воздуха в органной трубе), электромагнитных (колебания в LC-контуре) и др. Теория колебаний рассматривает эти различные по физической природе явления с единой точки зрения и определяет их общие свойства.

Графически гармонические колебания удобно представить с помощью вектора, вращающегося с постоянной угловой скоростью вокруг оси, перпендикулярной к этому вектору и проходящей через его начало. Угловая скорость вращения вектора соответствует круговой частоте гармонического колебания.

Векторная диаграмма одного гармонического колебания

Периодический процесс любой формы может быть разложен в бесконечный ряд простых гармонических колебаний с различными частотами, амплитудами и фазами.

Гармоника — гармоническое колебание, частота которого в целое число раз больше частоты некоторого другого колебания, называемого основным тоном. Номер гармоники указывает, во сколько именно раз частота ее больше частоты основного тона (например, третья гармоника — гармоническое колебание с частотой, втрое большей, чем частота основного тона).

Всякое периодическое, но не гармоническое (т. е. отличающееся по форме от синусоидального) колебание может быть представлено в виде суммы гармонических колебаний — основного тона и ряда гармоник. Чем больше рассматриваемое колебание отличается по форме от синусоидального, тем большее число гармоник оно содержит.

Мгновенное значение u и i

Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U

Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, действующим значением тока называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Источник



Что такое переменный ток

Что такое переменный ток. Определение переменного тока

Переменный ток – это направленное движение заряженных частиц, направление движения которых меняется на противоположное через равные промежутки времени. Если постоянный ток течет в одном направлении и не меняется по величине, то переменный ток может быть в данный момент положительным, а через определенный промежуток времени отрицательным.

Получение переменного тока

Получение переменного тока

Вырабатывают переменный ток генераторы переменного напряжения, которые преобразуют механическую энергию в электрическую. Форма переменного тока может быть различной и зависит от его назначения. Форма переменного тока промышленного назначения и для бытовых нужд населения носит синусоидальный характер.

Он имеет такие характеристики как амплитуда, частота и период. Периодом синусоидального тока является его полный цикл колебания и измеряется временем совершения одного цикла колебания. Такие циклы повторяются и поэтому переменный ток еще называют циклическим.

Период обозначается буквой Т и выражается в секундах. Другим параметром синусоидального тока является частота, которая обратно пропорциональна периоду т. е. F = 1/Т. Если период переменного тока равен 1 секунде, то частота его будет равна 1 Гц.

Период, частота и амплитуда переменного тока

Период, частота и амплитуда переменного тока

Существует два стандарта переменного тока – это 50 Гц и 60 Гц. В России используется частота сети 50 Гц, а в Канаде и США 60 Гц. Такой параметр как амплитуда, определяется его наибольшей величиной в определенный промежуток времени, она может иметь отрицательное или положительное значение.

Что такое трехфазный переменный ток

Если два синусоидальных сигнала одновременно достигают наибольшей амплитуды и нуля, то можно говорить что эти сигналы имеют одинаковую фазу, т. е. совпадают по фазе. Если эти сигналы имеют разные значения максимума и нуля, то они сдвинуты по фазе.

Электрическая схема соединений треугольник

Электрическая схема соединений треугольник

В трехфазном переменном токе имеется три сигнала однофазного синусоидального тока сдвинутых относительно друг друга на 120°. Из многофазных электрических сетей в основном выбрана трехфазная сеть, как наиболее оптимальная. Трехфазная сеть состоит из 3-х однофазных сетей.

Такую однофазную сеть в трехфазной сети называют фазой. Возможны два вида соединения фаз в трехфазной сети – это соединение «треугольником» и «звездой». При соединении «звездой» одни концы генератора соединяются вместе и образуют нулевую точку, а другие провода обмоток идущие к нагрузкам называются линейными.

Напряжение между линейными проводами и нулевыми проводами называются фазным напряжением. А напряжение между линейными проводами называют линейным напряжением. Нулевой провод используется в случаях неравномерной нагрузки, позволяя выравнивать напряжение фаз.

Нейтральный провод применяется в схеме освещения, где создать равномерную нагрузку нелегко, так как не все лампы включаются одновременно и равномерно по фазам. Между фазными и линейными напряжениями имеется зависимость: Uл = √3*Uф ≈ 1,73*Uф. В трехфазных сетях по схеме «звезда» Uл – 380 В, а Uф = 220 В.

Фазное и линейное напряжение в трехфазных цепях схемы звезда

Фазное и линейное напряжение в трехфазных цепях схемы звезда

Если нагрузка в электрической цепи по схеме «звезда» в трех фазах одинакова, т. е. симметрична, то в нейтральном проводе тока нет, или он минимальной величины. А если ток нейтрали незначителен, то и сечение нулевого провода значительно меньше, чем сечение линейного провода. Когда нагрузка одинакова, ток в нейтрали будет равен нулю.

Нейтраль в этом случае не нужна. Тогда используют схему соединения трехфазной сети «треугольник», где все концы соединяются с началами обмоток генератора и образуют схему «треугольник» без нейтрали. В схеме «треугольник» фазные и линейные напряжения равны Uл = Uф, а токи определяются по формуле – IЛ = √3*IФ, где линейный ток в 1,73 раза больше фазного.

Соединение по схеме «треугольник» иногда используется в освещении, но в основном такую схему применяют в трехфазных сетях с небольшим перекосом фаз. Также тяжёлый запуск асинхронных электродвигателей осуществляется по схеме «звезда», чтобы снизить большой пусковой ток электродвигателя, а достигнув рабочего режима, переходят на схему «треугольник».

Источник

Читайте также:  Как стабилизировать ток при зарядке аккумуляторов