Меню

Отсутствие тока в линии

Что такое потери напряжения и причины образования потерь напряжения

Для понимания, что такое потеря напряжения , рассмотрим векторную диаграмму напряжения трехфазной линии переменного тока (рис. 1) с одной нагрузкой в конце линии ( I ).

Предположим, что вектор тока разложен на составляющие I а и I р. На рис. 2 в масштабе построены векторы фазного напряжения в конце линии U 3ф и тока I , отстающего от него по фазе на угол φ2 .

Для получения вектора напряжения в начале линии U1 ф следует у конца вектора U 2ф построить в масштабе напряжения треугольник падений напряжения в линии (abc). Для этого вектор а b , равный произведению тока на активное сопротивление линии ( I R), отложен параллельно току, а вектор b c , равный произведению тока на индуктивное сопротивление линии ( I Х), — перпендикулярно вектору тока. При этих условиях прямая, соединяющая точки О и с, соответствует величине и положению в пространстве вектора напряжения в начале линии ( U1 ф) относительно вектора напряжения в конце линии ( U2 ф). Соединив концы векторов U1 ф и U2 ф, получим вектор падения напряжения на полном сопротивлении линии ac=IZ.

Схема с одной нагрузкой на конце линии

Рис. 1. Схема с одной нагрузкой на конце линии

Векторная диаграмма напряжений для линии с одной нагрузкой. Потери напряжения в линии

Рис. 2. Векторная диаграмма напряжений для линии с одной нагрузкой. Потери напряжения в линии.

Условились называть потерей напряжения алгебраическую разность фазных напряжений в начале и конце линии, т. е. отрезок ad или почти равный ему отрезок ас’.

Векторная диаграмма и выведенные из нее соотношения показывают, что потеря напряжения зависит от параметров сети, а также от активной и реактивной составляющих тока или мощности нагрузки.

При расчете величины потери напряжений в сети активное сопротивление необходимо учитывать всегда, а индуктивным сопротивлением можно пренебречь в осветительных сетях и в сетях, выполненных сечениями проводов до 6 мм2 и кабелей до 35 мм2.

Что такое потери напряжения и причины образования потерь напряжения

Определение потери напряжения в линии

Потерю напряжения для трехфазной системы принято обозначать для линейных величин определять по формуле

где l — протяженность соответствующего участка сети, км.

Если заменить ток мощностью, то формула примет вид:

где Р — активная мощность, Q — реактивная мощность, кВар; l — протяженность участка, км; Uн — номинальное напряжение сети, кВ.

Изменение напряжения в линии

Допустимые потери напряжения

Для каждого приемника электроэнергии допускаются определенные потери напряжения . Например, асинхронные двигатели в нормальных условиях допускают отклонение напряжения ±5%. Это значит, что если номинальное напряжение данного электродвигателя составляет 380 В, то напряжения U ‘доп = 1,05 U н = 380 х1,05 = 399 В и U «доп = 0,95 U н = 380 х 0,95 = 361 В следует считать его предельно допустимыми значениями напряжения. Естественно, что все промежуточные напряжения, заключенные между значениями 361 и 399 В, также будут удовлетворять потребителя и составят некоторую зону, которую можно назвать зоной желаемых напряжений.

Так как при работе предприятия имеет место постоянное изменение нагрузки (мощность или ток, протекающий по проводам в данное время суток), то в сети будут иметь место и различные потери напряжения, изменяющиеся от наибольших значений, соответствующих режиму максимальной нагрузки dUma х, до наименьших dUmin , соответствующих минимальной нагрузке потребителя.

Для подсчета величины этих потерь напряжения следует воспользоваться формулой:

Из векторной диаграммы напряжений (рис. 2) следует, что действительное напряжение у приемника U2ф можно получить, если из напряжения в начале линии U1 ф вычесть величину dU ф, или, переходя к линейным, т. е. междуфазным напряжениям, получим U2 = U1 — dU

Расчет потерь напряжения

Расчет потерь напряжения

Пример. Потребитель, состоящий из асинхронных двигателей, подключен к шинам трансформаторной подстанции предприятия, на которых поддерживается постоянное в течение суток напряжение U1 = 400 В.

Наибольшая нагрузка потребителя отмечена в 11 ч утра, при этом потеря напряжения dUмакс = 57 В, или dUмакс % = 15%. Наименьшая нагрузка потребителя соответствует обеденному перерыву, при этом dUмин — 15,2 В, или dUмин % = 4%.

Необходимо определить действительное напряжение у потребителя в режимах наибольшей и наименьшей нагрузок и проверить лежи г ли оно в зоне желаемых напряжений.

Потенциальная диаграмма для линии с одной нагрузкой

Решение. Определяем действительные значения напряжений:

U2 макс = U1 — dUмакс = 400 — 57 = 343 В

U2 мин = U1 — dUмин = 400 — 15,2 = 384,8 В

Желаемые напряжения для асинхронных двигателей с Uн = 380 В должны удовлетворять условию:

399 ≥ U2 жел ≥ 361

Подставив в неравенство вычисленные значения напряжений, убеждаемся, что для режима наибольших нагрузок соотношение 399 > 343 > 361 не удовлетворяется, а для наименьших нагрузок 399 > 384,8 > 361 удовлетворяется.

Вывод. В режиме наибольших нагрузок потеря напряжения настолько велика, что напряжение у потребителя выходит за пределы зоны желаемых напряжений (снижается) и не удовлетворяет потребителя.

Этот пример можно проиллюстрировать графически потенциальной диаграммой рис. 3. При отсутствии тока напряжение у потребителя будет численно равно напряжению на питающих шинах. Так как потеря напряжения пропорциональна длине питающей линии, то напряжение при наличии нагрузки изменяется вдоль линии по наклонной прямой от величины U1 = 400 В до величины U2 макс = 343 В и величины U2 мин = 384,8 В.

Как видно из диаграммы, напряжение в режиме наибольшей нагрузки вышло из зоны желаемых напряжений (точка Б графика).

Таким образом, даже при постоянной величине напряжения на шинах питающего трансформатора, резкие изменения нагрузки могут создать у приемника недопустимую величину напряжения.

Кроме того, может оказаться, что при изменениях нагрузки в сети от наибольшей нагрузки в дневное время до наименьшей нагрузки в ночное время сама энергетическая система не сможет обеспечить должной величины напряжения на выводах трансформатора. В обоих этих случаях следует прибегнуть к средствам местного, главным образом, ступенчатого изменения напряжения.

Источник

Семь способов борьбы с потерями в воздушных электрических сетях

Семь способов борьбы с потерями в воздушных электрических сетяхПричины потерь электроэнергии в воздушных линиях и способы борьбы с ними, на основе практического опыта.

Вероятно, каждый, кто имеет дом в деревне, живет в частном секторе в городе или строит свой дом, со временем столкнется с проблемой нестабильности электросети. Это выражается в резких бросках напряжения, проблемах защиты электроприборов при грозах, длительных периодах сильно завышенного или сильно заниженного напряжения в электросети.

Многие из этих проблем связаны с особенностями воздушных электрических линий, другие, с невыполнением элементарных правил прокладки линий и их обслуживания. К сожалению, в нашей стране все более внедряется в жизнь лозунг: «Спасение утопающих – дело рук самих утопающих». Поэтому, попробуем рассмотреть эти проблемы и способы их решения подробнее.

Откуда берутся потери в электрических сетях?

Во всем виноват Ом.

Для тех кто, знаком с законом Ома, не трудно вспомнить, что U=I*R. Это значит, что падение напряжения в проводах электролинии пропорционально ее сопротивлению и току через нее. Чем больше это падение, тем меньше напряжение в розетках у вас дома. Поэтому сопротивление линии электропередач нужно снижать. Причем ее сопротивление складывается из сопротивления прямого и обратного провода — фазы и нуля от трансформатора подстанции до вашего дома.

Непонятная реактивная мощность.

Вторым источником потерь является реактивная мощность или точнее реактивная нагрузка. Если нагрузка чисто активная, например это лампы накаливания, электронагреватели, электроплитки, то электроэнергия потребляется практически полностью ( кпд более 90%, cos стремится к 1). Но это идеальный случай, обычно нагрузка имеет емкостной или индуктивный характер. Реально косинус фи потребителя величина изменяемая по времени и имеет значение от 0.3 до 0.8, если не применять специальных мер.

При реактивной нагрузке имеет место явление неполного поглощения энергии, ее отражения от нагрузки и циркуляция паразитных токов в проводах. При этом получаются дополнительные потери в проводах на нагрев, броски напряжения и тока, приводящие к неисправностям. Например, частично нагруженный асинхронный электродвигатель электропилы или пилорамы имеет cos 0.3- 0.5. Кроме тепловых потерь, при наличии мощной реактивной нагрузки сильно «врут» электросчетчики.

Из статистики известно, что по причине, нескомпенсированной реактивной мощности потребитель теряет до 30% электроэнергии. Для того чтобы ликвидировать такие типы потерь, используются компенсаторы реактивной мощности. Такие устройства серийно выпускаются промышленностью. Причем они бывают от «однорозеточного» варианта, до устройств, устанавливаемых на трансформатор подстанции.

Оборотни в фуфайках.

Третьим источником потерь, является банальное воровство электроэнергии. Казалось бы, этим должны заниматься правоохранительные органы, но они не имеют отделов энергоаудита. Поэтому, третьим источником потерь тоже должен заниматься потребитель, т.к. по закону у него должен стоять общедомовой или общехозяйственный счетчик и за воровство паршивой овцы платит все стадо.

Оценка потерь в линии на конкретном примере.

Активное сопротивление линии R=(ρ*L)/ S, где ρ — удельное сопротивление материала провода, L- его длина, S – поперечное сечение. Для меди удельное сопротивление составляет 0,017, а для алюминия 0,028 Ом*мм2/м. Медь имеет почти в два раза меньшие потери, но она гораздо тяжелее и дороже алюминия, поэтому для воздушных линий обычно выбирают алюминиевые провода.

Таким образом, сопротивление одного метра алюминиевого провода, сечением 16 квадратных миллиметров, составит (0.028 х 1)/16=0.0018 Ом. Посмотрим, каковы будут потери в линии длиной 500 м, при мощности нагрузки 5 кВт. Так как ток течет по двум проводам, то длину линии удваиваем, т.е. 1000 м.

Сила тока при мощности 5 кВт составит: 5000/220=22.7 А. Падение напряжения в линии U=1000х0.0018х22.7=41 В. Напряжение на нагрузке 220-41=179 В. Это уже меньше допустимых 15% снижения напряжения. При максимальном токе 63 А, на который рассчитан этот провод ( 14 кВт), т.е. когда свои нагрузки включат ближайшие соседи, U=1000х0.0018х63=113 В! Именно поэтому в моем дачном доме по вечерам еле светится лампочка!

Читайте также:  Ток тиг сварка толщина

Способы борьбы с потерями.

Первый простейший способ борьбы с потерями.

Первый способ основан на снижении сопротивления нулевого провода. Как известно ток течет по двум проводам: нулевому и фазному. Если увеличение сечения фазного провода достаточно затратное (стоимость меди или алюминия плюс работы по демонтажу и монтажу), то сопротивление нулевого провода можно уменьшить достаточно просто и очень дешево.

Этот способ использовался с момента прокладки первых линий электропередач, но в настоящее время из-за «пофигизма» или незнания часто не используется. Заключается он в повторном заземлении нулевого провода на каждом столбе электролинии или (и) на каждой нагрузке. В этом случае параллельно сопротивлению нулевого провода подключается сопротивление земли между нулем трансформатора подстанции и нулем потребителя.

Если заземление сделано правильно, т.е. его сопротивление менее 8 Ом для однофазной сети, и менее 4 Ом для трехфазной, то удается существенно (до 50%) снизить потери в линии.

Второй простейший способ борьбы с потерями.

Второй простейший способ тоже основан на снижении сопротивления. Только в этом случае необходимо проверять оба провода — ноль и фазу. В процессе эксплуатации воздушных линий из-за обрыва проводов образуется места локального повышения сопротивления – скрутки, сростки и т.д. В процессе работы в этих местах происходит локальный разогрев и дальнейшая деградация провода, грозящая разрывом.

Такие места видны ночью из-за искрения и свечения. Необходимо периодически визуально проверять электролинию и заменять особо плохие ее отрезки или линию целиком.

Для ремонта лучше всего применить самонесущие алюминиевые изолированные кабели СИП. Они называются самонесущими, т.к. не требуют стального троса для подвески и не рвутся под тяжестью снега и льда. Такие кабели долговечны (срок эксплуатации более 25 лет), есть специальные аксессуары для легкого и удобного крепления их к столбам и зданиям.

Третий способ борьбы с потерями.

Понятно, что третьим способом является замена отслужившей «воздушки» на новую.

В продаже имеются кабели типов СИП-2А, СИП-3, СИП-4. Сечение кабеля выбирают не менее 16 квадратных миллиметров, он может пропускать ток до 63 А, что соответствует мощности 14 кВт при однофазной сети и 42 кВт при трехфазной. Кабель имеет двухслойную изоляцию и покрыт специальным пластиком, защищающим изоляцию проводов от солнечной радиации. Примерные цены на СИП можно посмотреть здесь: http://www.eti.su/price/cable/over/over_399.html. Двухпроводный СИП кабель стоит от 23 руб. за погонный метр.

Четвертый способ борьбы с потерями.

Этот способ основан на применении специальных стабилизаторов напряжения на входе в дом или другой объект. Такие стабилизаторы бывают как однофазного, так и трехфазного типа. Они увеличивают cos и обеспечивают стабилизацию напряжения на выходе в пределах + — 5%, при изменении напряжения на входе + — 30%. Их мощностной ряд может быть от сотен Вт до сотен кВт.

Вот несколько сайтов посвященных стабилизаторам: http://www.enstab.ru, http://www.generatorplus.ru, http://www.stabilizators.ru/, http://www.aes.ru. Например, однофазный стабилизатор «Лидер», мощностью 5 кВт, стоит 18500 руб. Отметим однако, что из-за перекоса фаз и потерь в электролинии, напряжение на входе стабилизатора может падать ниже 150 В. В этом случае, срабатывает встроенная защита и вам ничего не остается, как снизить свои потребности в электроэнергии.

Пятый способ компенсации потерь электроэнергии.

Это способ использования устройств компенсации реактивной мощности. Если нагрузка индуктивная, например различные электромоторы, то это конденсаторы, если емкостная, то это специальные индуктивности.

Шестой способ – борьба с воровством электроэнергии.

По опыту работы, самым эффективным решением является вынос электросчетчика из здания и установка его на столбе линии электропередачи в специальном герметичном боксе. В этом же боксе устанавливаются вводный автомат с пожарным УЗО и разрядники защиты от перенапряжений.

Седьмой способ борьбы с потерями.

Этот способ снижения потерь за счет использования трехфазного подключения. При таком подключении снижаются токи по каждой фазе, а следовательно потери в линии и можно равномерно распределить нагрузку. Это один из самых простых и самых эффективных способов. Как говорят: «Классика жанра».

Выводы.

Если вы хотите снизить потери электроэнергии, то сначала сделайте аудит ваших электросетей. Если вы сами не в состоянии это сделать, то сейчас много организаций готовы помочь вам за ваши деньги. Надеюсь, что советы, приведенные выше, помогут осознать с чего начать и к чему стремиться. Все в ваших силах. Желаю успехов!

Источник

От чего зависят потери тока в электрических сетях

Повышение энергоэффективности является основной задачей проектировщиков и эксплуатационщиков силовой электроники. Потери тока и напряжения связанные с проводами, кабельными муфтами, наконечниками, соединителями являются серьезной проблемой при соединении и распределении напряжения, а также внутри трансформаторов, особенно на частотах, способствующих возникновению вихревых токов.

Потери тока это большие суммы убытка от передачи и распределения напряжения, которые не компенсируются пользователями.

Распределительный сектор рассматривается как проблемное звено во всем энергетическом секторе.

С целью повышения энергоэффективности торговый дом «Скала» сконцентрировался на поставках большого перечня оборудования и устройств силовой электроники.

потери тока

Сотрудничество с заводами-изготовителями у данной компании позволяет поставлять продукцию от бытовой проводки до сложной оснастки по укладке высоковольтных линий передачи в короткое время. Так поставка уникальной оснастки в виде кабельных чулков по прокладке кабеля в траншеях, колодцах, трубах или металлорукавов для защиты от механических и климатических воздействий не является проблемой. Узкоспециализированное электрокоммуникационное оборудование позволяет смонтировать оборудование с наименьшими затратами.

Типы потерь при передаче тока

Имеются два типа расхода энергии при передаче и распределении напряжения:

  1. Технические потери.
  2. Технологические – из-за погрешностей, недостоверности расчетов, краж.

Технические потери

Технические потери тока обусловлены энергией, рассеиваемой в проводниках, оборудовании, используемом для линии электропередачи, как кабельные муфты, наконечники, соединители, трансформаторы, подлинии электропередачи и распределительные линии. Для снижения утраты тока должны применяться технически исправные электрокоммуникационные устройства.
Технические потери напряжения обычно составляют около половины потерь от распределения, и непосредственно зависят от характеристик и режима работы сети. Основной объем утрат в энергосистеме приходится на физические параметры как активное погонное сопротивление, погонная индуктивность, емкость и проводимость изоляции, затухание и волновое сопротивление. Поэтому распределительные системы должны быть должным образом исправны, чтобы обеспечить утраты в пределах допустимых пределов.

Кроме того, неожиданное увеличение нагрузки выражается в увеличении технических потерь выше нормального уровня и приводит к авариям и неисправностям.

Существует два вида технических потерь

1. Постоянные/фиксированные технические потери

Фиксированные потери не изменяются в зависимости от тока и составляют от 25% и 40%. Эти потери принимают форму тепла и шума и происходят до тех пор, пока энергосеть находится под напряжением. Эти энергозатраты в распределительных сетях являются фиксированными.

К основным фиксированным потерям тока в сети можно отнести следующие:

  • из-за тока утечки
  • коронный разряд в виде ионизации воздуха
  • диэлектрические рассеивания энергии
  • утечка в выключенной цепи
  • вызванные непрерывной нагрузкой измерительных элементов и элементов управления

Переменные потери изменяются в зависимости от количества распределяемой электроэнергии и, пропорциональны квадрату тока. Следовательно, увеличение тока на 2% приводит к увеличению затрат более чем на 2%. От 60% до 75% технических или физических затрат в распределительных сетях являются переменными. Переменные уменьшения тока могут быть изменены путем ремонта и модернизации существующих линий. Так при увеличении площади поперечного сечения кабелей для определенной нагрузки затраты будут падать. Это приводит к прямому соглашению между объемом потерь и стоимостью финансовых затрат. Считается, что оптимальный средний коэффициент потерь, обосновывающий стоимость при проектировании энергосистемы, должен быть минимальным.

К переменным потерям относятся:

  • джоулевые потери тока (тепловые) в линиях
  • из-за импедансного сопротивления (переменного тока)
  • вызванные контактным сопротивлением

Основные причины технических потерь

  • Длинные распределительные линии

На практике линии протягиваются на большие расстояния для подачи нагрузок, разбросанных по большим площадям. Таким образом, распределительные линии радиально проложены и обычно простираются на большие расстояния. Это приводит к высокому сопротивлению линии и, следовательно, высоким значениям I 2 R в линии.

  • Бессистемное разрастание субтрансляционной и распределительной систем в новые районы
  • Значительная электрификация сельских районов с помощью длинных линий
  • Недостаточный размер сечения проводников распределительных линий.

Размер сечения проводников следует выбирать исходя из мощности стандартного проводника для поддержания определенного напряжения, но сельские нагрузки обычно рассеяны и обычно питаются радиальными потребилелями. Размер проводника этих фидеров должен быть достаточным.

  • Установка силовых трансформаторов вдали от центров нагрузки
    Если силовые трансформаторы расположить не в центре распределительной системы, то самые дальние потребители получают экстремально низкое напряжение, даже если на трансформаторах поддерживается хороший уровень напряжения. Поэтому, чтобы уменьшить падение напряжения в линии до самых дальних потребителей, силовой трансформатор должен быть расположен в центре нагрузки, чтобы держать падение напряжения в разрешенных пределах.
  • Низкий коэффициент мощности энергосистемы.

Стандартный коэффициент мощности обычно колеблется от 0,6 до 0,7. Низкий коэффициент мощности способствует высоким распределительным падениям тока. Если коэффициент мощности низкий, то потери, пропорциональные квадрату тока, будут больше. Таким образом, падения тока в линии могут быть уменьшены путем улучшения коэффициента мощности.

  • Плохое качество силовой электрофурнитуры

Плохое качество силовой электрофурнитуры вносит значительный вклад в увеличение потерь при распределении. Кабельные муфты, наконечники, соединители, кабели и материалы кабельного монтажа, припой, защита кабеля в земле являются источниками потерь тока. Поэтому количество стыков должно быть сведено к минимуму. Для обеспечения прочных соединений необходимо использовать надлежащие методы соединения. Соединения с предохранителем, изолятором, выключателем и т. д. должны периодически проверяться и поддерживаться в надлежащем состоянии, чтобы избежать искрения и нагрева контактов. Замена поврежденных проводов и соединений также должна производиться своевременно, чтобы избежать любой причины утечки и потери мощности.

  • Фазный ток фидера и балансировка нагрузки
Читайте также:  Вихревые токи в электроустановках

Одним из самых простых способов экономии в распределительной системе является балансировка тока по трехфазным цепям. Балансировка фаз фидера также имеет тенденцию уравновешивать падение напряжения между фазами, давая трехфазным клиентам меньший дисбаланс напряжения. Даже если напряжение по всем фазам выходит одинаковое, то это не значит что у потребителей будет также. Фидеры обычно считаются без перекоса фаз когда величины фазного тока разняться не более чем на 10%. Балансировка и перераспределение нагрузки снизит потери тока. Обычно для устранения устанавливаются дополнительные переключатели нагрузки.

  • Влияние коэффициента нагрузки на потери

потери тока

Затрачиваемая потребителем энергия зависит от времени суток и года. Жилые дома обычно имеют самый высокий спрос на электроэнергию в вечерние часы. Предприятия промышленности потребляют больше энергии в начале и середине дня. Поскольку текущая нагрузка является основным фактором потерь распределительной мощности, регулирование потребления энергии на более высоком уровне в течение дня помогает снизить пиковые и общие падения энергии. Процент потерь напряжения также снижается за счет повышения коэффициента нагрузки.
Энергоснабжающие компании также используют стоимостные параметры, чтобы повлиять на потребителей. Так в нерабочее время стоимость электроэнергии ниже.

Технологические потери

Нетехнические потери напряжения связаны с показаниями счетчиков, ошибками в показаниях приборов учета, выставлением счетов за потребление энергии клиентами, отсутствием администрирования, финансовыми ограничениями, а также кражами энергии.
Основные причины нетехнических потерь устраняются административным порядком.

Источник

Последствия при падении напряжения по длине кабеля и расчет потерь

Руслан КоноваловРуслан Коновалов

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Потери напряжения зависят прежде всего от длины кабеля

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

Падение напряжения на линии негативно сказывается на работе осветительных приборов

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Конструкция силового кабеля

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

Схема падения напряжения в проводнике

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Расчет потерь напряжения при электроснабжении частного дома

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Выбор сечения кабеля по мощности

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Схема электропроводки в квартире

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Переплата за электроэнергию

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Читайте также:  Определите погрешность измерения амперметра прибор для измерения силы тока

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

Схема подключения электродвигателя к трехфазной сети

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Программа для расчета сечения кабеля

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Онлайн сервис для расчета сечения проводника

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Источник



Падение и потеря напряжения в линии

date image2014-02-02
views image8280

facebook icon vkontakte icon twitter icon odnoklasniki icon

Различие в напряжениях U и U в П-образной схеме определяется падением напряжения на сопротивлении Z12(Z12+jx12), вызванным током I12. Определяется это падением напряжения как сумма вектора I12r12, совпадающего по фазе с вектором I12 и вектора I12´jx12, опережающего вектор I12 на 90 о .

Падение напряжения – геометрическая (векторная) разность между комплексами напряжений начала и конца линий.

На рис. падение напряжения это вектор , т.е.

разность комплексных значений по концам линий, используется для характеристики режима линии.

Продольной составляющей падения напряжения DU к 12 называют проекцию падения напряжения на действительную ось или на напряжение U2, DU к 12=АС. Индекс “к” означает , что U к 12 – проекция на напряжение конца линии U2.

Обычно DU к 12 выражается через данные в конце линии: U2, P к 12, Q к 12.

Поперечная составляющая падения напряжения dU к 12 – это проекция падения напряжения на мнимую ось, jdU к 12=СВ. Т. о. U1-U2= ´I12´Z12=DU к 12+jdU к 12.

Величина dU к 12 определяет сдвиг вектора напряжения в начале линии (U1) на угол d по отношению к вектору напряжения в ее конце (U2).

Часто используют понятие потеря напряжения – это алгебраическая разность между модулями напряжений начала (U1) и конца (U2) линий.

Если поперечная составляющая dU к 12 мала (например, в сетях Uном £ 110кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения напряжения.

Потеря напряжения является показателем изменения относительных условий работы потребителей в начале и в конце линии.

Расчет режимов линий электропередач и электрических сетей при заданной мощности нагрузки

При подаче энергии по линии от начала к ее концу имеют место потери реактивной мощности. Они обусловлены реактивным сопротивлением линии и соответствующим ему реактивным сопротивлением схемы замещения этой линии. При передаче энергии имеют место и потери активной мощности, расходуемой на нагревание проводов. Поэтому в схеме замещения следует различать полную мощность до сопротивления Z12(r12+jx12), S н 12 и после него S к 12.

Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце линии

Необходимо определить напряжение U1, мощности в конце и в начале продольной части линии S к 12, S н 12, потери мощности DS12, мощность в начале линии S1. Для проверки ограничений по нагреву иногда определяют ток в линии I12.

Расчет аналогичен расчету при заданном токе нагрузке (I2), и состоит в последовательном определении от конца линии к началу неизвестных мощностей и напряжений при использовании I закона Кирхгофа и закона Ома. Будем использовать мощности трех фаз и линейные напряжения.

Зарядная (емкостная) мощность трех фаз в конце линии:

Мощность в конце продольной части линии по I закону Кирхгофа: S к 12=S2jQ к с12

Ток в начале и в конце продольной ветви линии одинаков.

Мощность в начале продольной ветви линии больше, чем мощность в конце, на величину потерь мощности в линии, т.е. S н 12=S к 12+DS12

Линейное напряжение в начале линии по закону Ома равно:

Емкостная мощность в начале линии: —jQ н c12=

Под влиянием зарядной мощности Qс реактивная мощность нагрузки Q2 в конце, схема замещения уменьшается . Аналогичное явление имеет место и в начале схемы замещения, где реактивная мощность Qс уменьшает реактивную мощность в начале линии.

Это свидетельствует о том, что зарядная мощность сокращает реактивную мощность, поступающую от станции в линию для питания нагрузки. Поэтому зарядная мощность условно может рассматриваться как “генератор” реактивной мощности.

В линии электрической сети имеют место как потери, так и генерация реактивной мощности.

От соотношения потерь и генерации реактивной мощности зависит различие между реактивными мощностями в начале и конце линии.

Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в начале линии

Задано напряжение в начале линии.

Т.к. U2 неизвестно, то невозможно определить последовательно от конца линии к началу определить неизвестные токи и напряжения по I закону Кирхгофа и закону Ома.

Источник