Меню

Падение напряжения это геометрическая разность

Справочник электрика. Потери напряжения, мощности и энергии

Основной причиной появления отклонений напряжения в электрической сети являются потери напряжения в линиях электропередачи и силовых трансформаторах, причем, главное значение имеют потери напряжения в линиях. На рис. 1, а приведены электрическая схема, включающая в себя источник питания С и две подстанции, связанные линией W без ответвлений. Здесь U1 — напряжение в начале, U2 — в конце линии.

Векторная диаграмма электрических величин для линии W, построенная на основе ее схемы замещения (рис. 1, б), приведена на рис. 1, в. Обычно нагрузка линии имеет активно-индуктивный характер, поэтому вектор тока İ отстает по фазе от вектора напряжения Ú2 конца линии на угол φ. Вектор напряжения в начале линии Ú1, получается в результате суммирования вектора напряжения в конце линии Ú2 с активной ΔÚwa =İR и реактивной ΔÚwp = jİX составляющими падения напряжения на линии İZw, где R, jX, Z — соответственно активное, индуктивное и полное сопротивления линии.

Модуль (длину) вектора İZw называют падением напряжения на линии. Вектор падения напряжения на линии можно разложить на две составляющие:

направленную по вектору Ú2 — продольную составляющую падения напряжения ΔÚw;

направленную перпендикулярно вектору Ú2 — поперечную составляющую падения напряжения δÚw.

Клуб. Справочник

Рис. 1. Потеря напряжения в линии

Из точки 0 на рис. 1, в радиусом, равным длине вектора 0, можно провести дугу окружности до пересечения в точке b с прямой Оα (по направлению вектора Ú2). Отрезок 0b равен модулю вектора Ú1 т. е. напряжению в начале линии. Потеря напряжения в линии равна длине отрезка cb, т. е. арифметической разности U1 – U2 Для упрощения потерю напряжения вычисляют приближенно и полагают ее равной не отрезку cb, а отрезку cd. Ошибка, получающаяся в результате такой замены, относительно невелика и допустима в расчетах. Тогда можно получить следующее выражение для потери напряжения в линии:

Клуб. Справочник

где Р, Q — соответственно, активная Р и реактивная Q мощности нагрузки в конце линии; U2 — напряжение в конце линии.

Таким образом, нужно различать падение напряжения и потерю напряжения на линии. Падение напряжения — это модуль геометрической разности векторов напряжения по концам линии

Читайте также:  Сильно проседает напряжение при включении потребителей

Потеря напряжения — это арифметическая разность напряжений по концам линии, т. е. ΔUw = U1 — U2.

Потеря напряжения показывает, насколько напряжение в конце линии отличается от напряжения в ее начале. Падение напряжения обычно больше потери напряжения из-за сдвига по фазе векторов Ú1 и Ú2. Практику в ГРС интересует потеря напряжения, а не падение напряжения, потому что потеря напряжения связывает наиболее простой формулой напряжения в начале и конце линии.

Источник



В чём состоит отличие понятий «потеря напряжения» и «падение напряжение». Что называется продольной и поперечной составляющими падения напряжения, отклонения напряжения.

Падение напряжения — постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением. Под падением напряжения также понимают величину на которую меняется потенциал при переходе из одной точки цепи в другую.

По закону Ома на участке проводника, обладающем активным сопротивлением , ток создаёт падение напряжения .

Падение напряжения, это к примеру прикосновение к токоведущим частям под напряжением и одновременное прикосновение к заземлённому проводнику, а то есть происходит разность потенциалов между двумя точками электрической цепи которых одновременно касается человек, падение напряжения на теле человека, то есть ток начинает бежать по человеку.

А потеря напряжения зависит от длины проводника, его сечения и от тока нагрузки, например если от питающего трансформатора питается скажем дом потребляет к примеру 10000 ватт, и потери в проводах которые передают энергию к дому например 300 ватт, то есть нам нужно ставить трансформатор не 10000ват а 10300 ватт по мощности. Так же зависит от тока, при больших нагрузках от потребителей может произойти потеря напряжения.

Падение напряжения— геометрическая (векторная) разность между комплексами напряжений начала и конца линии

Продольной составляющей падения напряжения AU12 — называют проекцию падения напряжения на действительную ось или на напряжение Ό?, AU12 К = AC

Дата добавления: 2016-05-05 ; просмотров: 5903 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Падение и потеря напряжения в линии

date image2014-02-02
views image8190

facebook icon vkontakte icon twitter icon odnoklasniki icon

Различие в напряжениях U и U в П-образной схеме определяется падением напряжения на сопротивлении Z12(Z12+jx12), вызванным током I12. Определяется это падением напряжения как сумма вектора I12r12, совпадающего по фазе с вектором I12 и вектора I12´jx12, опережающего вектор I12 на 90 о .

Падение напряжения – геометрическая (векторная) разность между комплексами напряжений начала и конца линий.

На рис. падение напряжения это вектор , т.е.

разность комплексных значений по концам линий, используется для характеристики режима линии.

Продольной составляющей падения напряжения DU к 12 называют проекцию падения напряжения на действительную ось или на напряжение U2, DU к 12=АС. Индекс “к” означает , что U к 12 – проекция на напряжение конца линии U2.

Обычно DU к 12 выражается через данные в конце линии: U2, P к 12, Q к 12.

Поперечная составляющая падения напряжения dU к 12 – это проекция падения напряжения на мнимую ось, jdU к 12=СВ. Т. о. U1-U2= ´I12´Z12=DU к 12+jdU к 12.

Величина dU к 12 определяет сдвиг вектора напряжения в начале линии (U1) на угол d по отношению к вектору напряжения в ее конце (U2).

Часто используют понятие потеря напряжения – это алгебраическая разность между модулями напряжений начала (U1) и конца (U2) линий.

Если поперечная составляющая dU к 12 мала (например, в сетях Uном £ 110кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения напряжения.

Потеря напряжения является показателем изменения относительных условий работы потребителей в начале и в конце линии.

Расчет режимов линий электропередач и электрических сетей при заданной мощности нагрузки

При подаче энергии по линии от начала к ее концу имеют место потери реактивной мощности. Они обусловлены реактивным сопротивлением линии и соответствующим ему реактивным сопротивлением схемы замещения этой линии. При передаче энергии имеют место и потери активной мощности, расходуемой на нагревание проводов. Поэтому в схеме замещения следует различать полную мощность до сопротивления Z12(r12+jx12), S н 12 и после него S к 12.

Читайте также:  Volter стабилизаторы напряжения для дома

Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце линии

Необходимо определить напряжение U1, мощности в конце и в начале продольной части линии S к 12, S н 12, потери мощности DS12, мощность в начале линии S1. Для проверки ограничений по нагреву иногда определяют ток в линии I12.

Расчет аналогичен расчету при заданном токе нагрузке (I2), и состоит в последовательном определении от конца линии к началу неизвестных мощностей и напряжений при использовании I закона Кирхгофа и закона Ома. Будем использовать мощности трех фаз и линейные напряжения.

Зарядная (емкостная) мощность трех фаз в конце линии:

Мощность в конце продольной части линии по I закону Кирхгофа: S к 12=S2jQ к с12

Ток в начале и в конце продольной ветви линии одинаков.

Мощность в начале продольной ветви линии больше, чем мощность в конце, на величину потерь мощности в линии, т.е. S н 12=S к 12+DS12

Линейное напряжение в начале линии по закону Ома равно:

Емкостная мощность в начале линии: —jQ н c12=

Под влиянием зарядной мощности Qс реактивная мощность нагрузки Q2 в конце, схема замещения уменьшается . Аналогичное явление имеет место и в начале схемы замещения, где реактивная мощность Qс уменьшает реактивную мощность в начале линии.

Это свидетельствует о том, что зарядная мощность сокращает реактивную мощность, поступающую от станции в линию для питания нагрузки. Поэтому зарядная мощность условно может рассматриваться как “генератор” реактивной мощности.

В линии электрической сети имеют место как потери, так и генерация реактивной мощности.

От соотношения потерь и генерации реактивной мощности зависит различие между реактивными мощностями в начале и конце линии.

Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в начале линии

Задано напряжение в начале линии.

Т.к. U2 неизвестно, то невозможно определить последовательно от конца линии к началу определить неизвестные токи и напряжения по I закону Кирхгофа и закону Ома.

Источник