Меню

Параметры настройки регуляторов это

Использование частотных преобразователей (пч) «веспер» в режиме пид-регулирования

Как настроить PID регулятор для преобразователей частоты Danfoss

Этот регулятор пользователь применяет для удержания частотником определенного параметра. Подключим механизм установки вентилятора.

Задающим сигналом работает потенциометр.

Обратную связь осуществит датчик давления.

Соблюдение полярности – важное условие при подсоединении пользователем датчика. Основную настройку регулятора сделаем программой МСТ-10, которая обеспечивает контролирование данных на графике

К частотнику присоединяемся через USB. Вводим данные нормы для мотора по паспорту в группу данных 1-2 и 1-22, 1-23 – частота, 1-24 – ток мотора, 1-25, скорость мотора.

Проводим параметры входов преобразователя частоты в группе 6. В группе 6-1 задаем данные для задающего сигнала. В группе 6-2 определяем значения датчика. Настраиваем частотник для работы регулировки процесса в контуре. Эти значения сочетаются не со всеми применениями. Они задаются пользователем конкретно во всех случаях.

Настраивание регулятора преобразователей частоты Danfoss происходит по определению пропорционального коэффициента и составляющих интегральных регулятора. Автоматические колебания различаются, заметны на осциллографе и постоянны по характеру. Если будет оставаться ошибка регулировки, то уменьшаем составляющую. Значение 20-94 уменьшим до уменьшения разницы и исчезновения колебаний. При сравнивании значения с заданием, настройка закончена.

Настройка ПИД-регулятора

Для каждой системы настройка прибора проводится индивидуально, здесь мы рассмотрим основные рекомендации, общие для различных ситуаций:

1. Установить дифференциальную и интегральную составляющие в нуль. Задать максимальную скорость и наблюдать за реакцией.

2. Увеличить пропорциональную составляющую и повторить пункт первый. Продолжать эту процедуру до начала автоколебательного процесса.

3. Уменьшать эту составляющую до стабильности системы.

4. Выставить значение пропорциональной составляющей на 15 % ниже устойчивого.

5. Выставить ступенчато-максимальное значение скорости с помощью изменения интегральной составляющей.

6. Обычно дифференциальный регулятор в настройке не нуждается.

7. Проверить стабильность системы.

Настройка преобразователя частоты своими руками

Чтобы электродвигатели работали правильным образом и с достаточной безопасностью, необходимо использовать частотные преобразователи. Современные частотные преобразователи имеют базу с электроникой, которая дает возможность на терминале задавать пользователю все параметры для работы. К ним относятся:

  • время периода разгона;
  • коммутационная частота;
  • частота питания электродвигателя;
  • установка логического входа.

Эти параметры определяются набором кода из символов. Некоторые настройки можно устанавливать на работающем двигателе и на остановленном. Изменять свойства можно по сети коммуникации или по компьютеру. Терминал расположен на лицевой панели частотника. Устанавливать настройки, управлять и анализировать параметры можно во время работы механизма.

Настраивание ПИД-регулятора

Для моторной управляемости системы настраивание ПИД-регулятора бывает сложным процессом. Расскажем, какие шаги для настройки могут сделать проще эту процедуру.

  1. Определите значение дифференциальной и интегральной равной нулю. Определите наибольшую скорость и контролируйте системную реакцию.
  2. Повышайте составляющую прямопропорционально и выполните первый пункт. Продолжайте действия до момента начала процесса с автоматическими колебаниями возле точки определения скорости.
  3. Снижайте пропорциональную величину, пока система не стабилизируется. Волны колебаний начнут затухать.
  4. Определите пропорциональную величину около 15% меньше этого постоянного пункта.
  5. Определяйте наибольшую скорость прерывисто, повышайте суммирующую составляющую до начала уменьшения колебаний скорости перед стабильным состоянием системы. Снижайте суммирующую составляющую до достижения системой определенной скорости без ошибки и колебаний.
  6. Во многих системах настраивание составляющей дифференциального вида не нужно. Если нужно быстродействие системы больше, то можно достигнуть этого путем настройки составляющей дифференциального вида. Устанавливайте скорость по интервалам, повышайте составляющую дифференциального вида, пока не стабилизируется система с наименьшим временем действия (повышайте медленно, избегая состояния нестабильности). Система станет оптимальной при одном перерегулировании.
  7. Контролируйте стабильность системы, устанавливая значения скорости с интервалами и периодами для гарантированной стабильности системы при плохом исполнении задания.

Настраивание датчика на 20 миллиампер ПИД-регулированием

1. Действия в программном меню

Управляющая панель частотного преобразователя А300 состоит из 3-уровневой структуры:

  1. Группы опциональных значений (1 уровень).
  2. Опциональные значения (2 уровень).
  3. Параметр опционального значения.

2. Настраивание характеристик электромотора и определение направления момента

Установить метод управления частотником в значении Р0-02:

  1. Р0-02=0 (настройка завода, пульт преобразователя).
  2. Р0-02=1 (входные команды внешнего управления D1-D7).

Установить характеристики номинального значения электромотора (применяйте параметры с таблички и паспорта электромотора):

  1. Мощность номинала Р1-01= установите значения.
  2. Напряжение номинала Р1-02= установите значения (по заводским настройкам 380 вольт).
  3. Ток номинала Р1-03= установите значения.
  4. Частота номинала Р1-04= установите значения (по заводским настройкам 50 герц).
  5. Обороты номинального значения Р1-05= установите значения.

После подсоединения и введения параметров нужно проконтролировать направление вращающего момента электромотора. После отключения меню программы на экране покажется 50 герц, клавишей «вниз» установите наименьшую частоту для задания направления вращающего момента. Для пуска мотора нажмите клавишу «пуск» (параметр Р0-02=0), определите направление момента вращения, затормозите мотор, нажав клавишу «стоп».

Если вращение не совпадает с направлением, то измените две любые фазы питания мотора (замену фаз производить при отключенном частотнике) или поменяйте параметр настройки Р0-09= (0-вперед, 1-назад). Еще раз проконтролируйте момент вращения, нажав клавишу «пуск», если направление момента вращения совпадает, то затормозите мотор, нажав клавишу «стоп». Нажмите клавишу «вверх» и возвратите настроенную частоту 50 герц.

3. Подсоединение датчика (выход на 20 миллиампер)

  1. Установку производить при выключенном питании частотного преобразователя.
  2. Напряжение датчика подсоединить к контакту «+24В», сигнал соединить с контактом «AI1», установить перемычку на контакты «COM» и «GND».

Переставить соединение «J1» в состояние «I».

4. Контроль обратной связи

  1. Подключите напряжение на частотный преобразователь, на экране возникнет подсветка 50 герц.
  2. Нажмите клавишу «сдвиг» 2 раза.
  3. На экране будет параметр обратной связи в интервале 0-10 (0-20 мА), зависит от настраиваемого параметра.

Связь обратного вида (4 мА).

  1. После подтверждения обратной связи нажмите три раза клавишу «сдвиг», появится на экране 50 герц.
  2. Установите наименьшее значение сигнала входа в величине Р4-13=2.00 (4 мА).

5.Как настраивать значение параметра ПИД-регулирования.

  1. Установите источник основной частоты Р0-03=8 (частоту определяет ПИД-регулятор).
  2. Поставьте значение ПИД-регулятора в значение РА-01= результат поддерживаемой величины в процентах (от 0 до 100%) от интервала датчика, РА-01= (результат поддерживаемого параметра/интервал датчика)*100%.

Пример установки значения:

Подсоединен датчик давления на 16 бар с сигналом выхода от 4 до 20 мА. Для давления в 10 бар нужно установить значение

Произведите тестовый пуск. Проверяйте поддерживаемое значение параметра по приборам, дублирующим измерения (ротаметр, термометр, манометр). Если система регулировки функционирует нестабильно или долгий отклик на замену проверяемого параметра, то применяйте настройки значений РА-05, -06, -07. Эти значения предназначены для точной настройки ПИД-регулятора.

Настраиваем интегральный коэффициент

При настройке двух предыдущих коэффициентов можно получить практически идеальную кривую регулирования или близкую к ней кривую, удовлетворяющую условиям задачи. Однако, как правило возникает так называемая «статическая ошибка». При этом в нашем примере температура стабилизируется не на заданном значении 25 °С, а на несколько меньшем значении. Дело в том, что если температура станет равной уставке (то есть разность текущей и заданной температур станет равна 0), то пропорциональная и дифференциальная составляющая будут равны нулю (см. функцию преобразования ПИД-регулятора). При этом мощность регулятора тоже станет равна 0 и он начнёт остывать.

Читайте также:  Схема регулятора влажности воздуха своими руками

Для того чтобы исключить этот эффект, используют интегральную составляющую. Её необходимо постепенно увеличивать до исчезновение статической ошибки. Однако, чрезмерное её увеличение тоже может привести к возникновению скачков температуры.

Примеры использования PID-регуляторов

Преобразователь частоты HVAC

Пример использования как внутренних, так и внешних PID-регуляторов для системы подготовки воздуха:

Управление кондиционированием воздуха с помощью встроенных PID-регуляторов частотника AS3 Toshiba

На представленной схеме вентилирования помещения показан процесс охлаждения воздуха с помощью водовоздушного теплообменника. Водяной контур служит для циркуляции холодной воды через теплообменник с помощью насоса.

PID-регуляторы PID1 и PID2 управляют вентилятором для обеспечения заданного расхода и, в критических случаях, для обеспечения заданной температуры воздуха. Например, при больших отрицательных температурах воздуха расходом можно пренебречь, достигая вторым регулятором улучшенного прогрева воздуха за счет более медленного его движения через нагреватель.

PID-регулятор PID3 по аналоговому каналу управляет насосом водяного контура для поддержания заданного давления. PID-регулятор PID4 может управлять другими вспомогательными системами (на схеме не показаны).

Компания СПИК СЗМА, как единственный официальный дилер Toshiba, предлагает купить для решения задач управление насосами, вентиляторами и станками частотники серии VF-AS3 по доступной цене. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты.

Задача настройки

Настройка регулятора производится с одной единственной целью: подобрать его коэффициенты для данной задачи таким образом, чтобы регулятор поддерживал величину физического параметра на заданном уровне. В нашем примере физическая величина — это температура.

Допустим текущая температура в помещении 10 °С, а мы хотим, чтобы было 25°С. Мы включаем регулятор и он начинает управлять мощностью обогревателя таким образом, чтобы температура достигла требуемого уровня. Посмотрим как это может выглядеть.

На данном рисунке красным цветом показана идеальная кривая изменения температуры в помещении при работе регулятора. Физическая величина плавно, без скачков, но в тоже время достаточно быстро подходит к заданному значению. Оптимальное время, за которое температура может достигнуть заданной отметки, определить довольно сложно. Оно зависит от многих параметров: размеров комнаты, мощности обогревателя и др. В теории это время можно рассчитать, но на практике чаще всего это определяется экспериментально.

Чёрным цветом показан график изменения температуры в том случае, если коэффициенты подобраны совсем плохо. Система теряет устойчивость. Регулятор при этом идёт «в разнос» и температура «уходит» от заданного значения.

Рассмотрим более благоприятные случаи.

На этом рисунке показаны графики, далёкие от идеального. В первом случае наблюдается сильное перерегулирование: температура слишком долго «скачет» относительно уставки, прежде чем достичь её. Во втором случае регулирование происходит плавно, но слишком медленно.

А вот и приемлемые кривые:

Данные кривые тоже не идеальны, но могут быть сочтены за удовлетворительные.

В процессе настройки регулятора, пользователю необходимо стремиться получить кривую, близкую к идеальной. Однако, в реальных условиях сделать это не так-то просто — приходится долго и мучительно подбирать коэффициенты. Поэтому зачастую останавливаются на «приемлемой» кривой регулирования. Например, в нашем примере нас могли бы устроить коэффициенты регулятора, при которых заданная температура достигалась бы за 15-20 минут с максимальным перерегулированием (максимальными «скачками» температуры) 2 °С. А вот время достижение уставки более часа и максимальные «скачки» температуры 5 °С — нас бы не устроили.

Далее поговорим о том, как подобрать коэффициенты для достижения оптимального регулирования. Рекомендуется настраивать коэффициенты в том же порядке, в котором это описано.

Из чего состоит ПИД-регулятор

С целью устранения ошибок в системе в состав упомянутого устройства входят три составляющих: интегральный, дифференциальный и пропорциональный регуляторы. Пропорциональный прибор является основным там, где задание уровня скорости пропорционально ошибке. Однако если использовать только эту составляющую, то в системе всегда будет присутствовать ошибка. Высокие значения данного устройства приводят к колебаниям и нестабильности системы, а низкие — к «вялости». Интегральный прибор используют для исключения ошибок. Скорость растет до момента исключения погрешности (при отрицательной ошибке — уменьшается). Относительно малые величины интегральной составляющей оказывают существенное влияние на работу прибора в целом. Если установить слишком большое значение, то система начнет работать с перерегулированием. Дифференциальное устройство оценивает скорость изменения ошибок, оно применяется для увеличения скорости системы. Однако при повышении быстродействия регулятора увеличивается и уровень перерегулирования, что может привести к нестабильности системы. Чаще всего данная составляющая выставляется на значение, близкое нулю, однако она может оказаться весьма полезной в системе позиционирования. Свое название ПИД-регулятор получил по первым буквам этих трех компонентов. Как видно из описания прибора, важным требованием к правильной работе устройства является его отладка.

Транскрипт

1 ПИД-регулирование давления: настройка преобразователей частоты ATV31/ ATV312 28/01/2014

2 СОДЕРЖАНИЕ Назначение… 3 Предварительные настройки… 4 Автоподстройка… 6 Выбор закона управления двигателем… 7 Конфигурирование канала управления… 8 Настройка авторестарта при пропадании и восстановлении напряжения питания… 8 Обратная связь… 9 Назначение обратной связи Задание давления Инверсия ПИД-регулятора Реакция на аварию датчика обратной связи Настройка ПЧ Настройка спящего режима Подключение датчика

Источник



Методы настройки промышленных регуляторов

date image2015-04-12
views image14473

facebook icon vkontakte icon twitter icon odnoklasniki icon

Параметры настройки регуляторов должны быть выбраны такими, чтобы в замкнутой автоматизированной системе регулирования (АСР) был обеспечен заданный запас устойчивости; при этом выбранный показатель качества регулирования должен быть не хуже требуемого (или должен иметь экстремальное значение).

Поскольку в теории автоматического регулирования запас устойчивости может быть оценен по-разному, а также используются различные показатели качества регулирования, в инженерных расчетах применяются несколько методов определения оптимальных параметров настройки регуляторов.

Ниже рассмотрены наиболее распространенные из них.

Формульный метод определения настроек регулятора

В практике наладочных работ широко используют приближенные формулы для определения оптимальных параметров настройки регуляторов. Метод используется для быстрой, приближенной оценки значений параметров настройки регулятора для трех видов оптимальных типовых процессов регулирования. Метод применим как для статических объектов с самовыравниванием (таблица 1), так и для объектов без самовыравнивания (таблица 2).

Таблица 1 — Формульный метод определения настроек регулятора для статических объектов с самовыравниванием.

Регулятор Типовой процесс регулирования
Апериодический С 20% перерегулированием Jmin
И
П
ПИ
ПИД

где T, τ, Коу — постоянная времени, запаздывание и коэффициент усиления объекта. В этих формулах предполагается, что настраивается регулятор с зависимыми настройками, передаточная функция которого имеет вид:

где Kp – коэффициент усиления регулятора;

Tи – постоянная интегрирования регулятора;

Tд – постоянная дифференцирования.

Таблица 2 – Формульный метод определения настроек регулятора для статических объектов без самовыравнивания.

Оптимальная настройка регуляторов по номограммам

В отличие от формульного метода, метод расчета по номограммам позволяет более точно определить настройки регулятора, т.к. учитывает наличие нелинейной зависимости между параметрами настройки регулятора и величиной отношения τ/Т.

Существуют номограммы для расчета настроек ПИ- и ПИД-регуляторов для объектов первого и второго порядков с запаздыванием.

Номограмма для настроек ПИ-регулятора представлена на рисунке 12.

Рис. 12 – Номограмма для расчета настроек ПИ-регулятора.

Предположим, что объект управления описывается звеном первого порядка с запаздыванием, а оптимальный процесс регулирования – это процесс с 20%-ным перерегулированием. Следует иметь в виду, что современные электронные и микропроцессорные регуляторы реализуют ПИ- и ПИД-законы регулирования с зависимыми настройками, а пневматические регуляторы – с независимыми настройками вида

Дифференциальная составляющая промышленных регуляторов обычно реализуется в виде

где K – коэффициент усиления регулятора по дифференциальной составляющей (выбирается в диапазоне 1 – 10);

Tf – постоянная времени фильтра.

Эти параметры определяются из соотношения

Чем выше уровень помех в выходном сигнале объекта, тем меньше рекомендуется брать величину K. Это будет способствовать уменьшению величины средней квадратичной ошибки регулирования.

Расчет настроек по частотным характеристикам объекта

Существует специальная аппаратура для экспериментального определения амплитудно-фазовой характеристики АФХ объекта управления. Эту характеристику можно использовать для расчета настроек ПИ-регулятора, где главным критерием является обеспечение заданных запасов устойчивости в системе.

Запасы устойчивости удобно характеризовать показателем колебательности системы M, величина которого в системе с ПИ- регулятором совпадает с максимумом амплитудно-частотной характеристики замкнутой системы. Для того чтобы этот максимум не превышал заданной величины, АФХ разомкнутой системы не должна заходить внутрь окружности с центром P и радиусом R, где

Можно доказать, что оптимальными, по минимуму среднеквадратичной ошибки регулирования настройками будут такие, при которых система с показателем колебательности М ≤ Мз будет иметь наибольший коэффициент при интегральной составляющей, чему соответствует условие Kp / Tи → min.

В связи с этим расчет оптимальных настроек состоит из двух этапов:

1. Нахождение в плоскости параметров Kp и Tи границы области, в которой система обладает заданным показателем колебательности Мз.

2. Определением на границе области точки, удовлетворяющей требованию Kp / Tи → min.

Методика расчета настроек ПИ регулятора по АФХ объекта

1. Строится семейство амплитудно-фазовых характеристик разомкнутой системы при Kp = 1 и различных значениях Tij (5-6 значений).

2. Задаются значением показателя колебательности M, из диапазона 1.55 ≤ M ≤ 2.3 (рекомендуется М = 1.6). Из начала координат проводят прямую OE под углом

где Мз — выбранное значение показателя колебательности.

3. Строится семейство окружностей, касающихся АФХ0j прямой OE под углом β, причем центр окружностей все время лежит на отрицательной действительной оси. В результате построения определяются радиусы этих окружностей Rj.

4. Для каждой окружности вычисляют предельное значение Kp .

5. По значениям Kpj и Kij строят границу области заданного показателя колебательности.

6. На этой границе определяют точку, для которой отношение Kp / Tи максимально.

Существует упрощенная методика настройки ПИ-регулятора по одной точке АФХ разомкнутой системы. В основу методики положен следующий факт. В результате экспериментов и численных расчетов было установлено, что для различных типов объектов управления при оптимально настроенном ПИ-регуляторе АФХ разомкнутых систем проходят приблизительно через одну точку с амплитудой Ap = 0.8, фазой φp = — 2.62 rad = — 150° и частотой ωp.

Экспериментальные методы настройки регулятора

Для значительного числа промышленных объектов управления отсутствуют достаточно точные математические модели, описывающие их статические и динамические характеристики. В то же время, проведение экспериментов по снятию этих характеристик весьма дорого и трудоемко. Экспериментальный метод настройки регуляторов не требуют знания математической модели объекта. Однако предполагается, что система смонтирована и может быть запущена в работу, а также существует возможность изменения настроек регулятора.

Таким образом, можно проводить некоторые эксперименты по анализу влияния изменения настроек на динамику системы. В конечном итоге гарантируется получение хороших настроек для данной системы регулирования. Существуют два метода настройки — метод незатухающих колебаний (метод Циглера и Никольса) и метод затухающих колебаний.

Метод незатухающих колебаний

В работающей системе выключаются интегральная и дифференциальная составляющие регулятора (Tи = ∞, Tд = 0), т.е. система переводится в П-закон регулирования. Путем последовательного увеличения Kp с одновременной подачей небольшого скачкообразного сигнала задания добиваются возникновения в системе незатухающих колебаний с периодом Kkp. Это соответствует выведению системы на границу колебательной устойчивости.

При возникновении данного режима работы фиксируются значения критического коэффициента усиления регулятора Kkp и периода критических колебаний в системе Tkp. При появлении критических колебаний ни одна переменная системы не должна выходить на уровень ограничения. По значениям Kkp и Tkp рассчитываются параметры настройки регулятора:

Расчет настроек регулятора можно производить по критической частоте собственно объекта управления ωkp. Учитывая, что собственная частота ωkp объекта управления совпадает с критической частотой колебаний замкнутой системы с П-регулятором, величины Kkp и Tkp могут быть определены по амплитуде и периоду критических колебаний собственно объекта управления.

При выведении замкнутой системы на границу колебательной устойчивости амплитуда колебаний может превысить допустимое значение, что в свою очередь приведет к возникновению аварийной ситуации на объекте или к выпуску бракованной продукции. Поэтому не все системы управления промышленными объектами могут выводиться на критический режим работы.

Метод затухающих колебаний

Применение этого метода позволяет настраивать регуляторы без выведения системы на критические режимы работы. Так же, как и в предыдущем методе, для замкнутой системы с П-регулятором, путем последовательного увеличения Kp добиваются переходного процесса отработки прямоугольного импульса по сигналу задания или возмущения с декрементом затухания D = 1/4.

Далее определяется период этих колебаний Tк и значения постоянных интегрирования и дифференцирования регуляторов Tи и Tд

После установки вычисленных значений Tи и Tд на регуляторе необходимо экспериментально уточнить величину Kp для получения декремента затухания D = 1/4. С этой целью производится дополнительная подстройка Kp для выбранного закона регулирования, что обычно приводит к уменьшению Kp на 20 ÷ 30%. Аналогичный метод настройки используется в адаптивных регуляторах американской фирмы «Фоксборо».

Большинство промышленных систем регулирования считаются качественно настроенными, если их декремент затухания D равен 1/4 или 1/5.

В настоящее время разработан новый метод настройки замкнутых систем управления, основанный на подаче пробных синусоидальных колебаний на вход регулятора. По амплитуде и фазе колебаний выходного сигнала объекта управления осуществляется расчет настроек ПИ-регулятора, исходя из условия обеспечения заданного показателя колебательности M и максимума отношения Kp / Tи.

Источник

ПИД-регулятор. Основные задачи, применение и методика настройки

Пропорционально-интегрально-дифференциальный регулятор или ПИД-регулятор — устройство, с обратной связью, применяемое в автоматических системах управления для поддержания заданного значения параметра. Благодаря своей универсальности они широко применяются в различных технологических процессах.

Читайте также:  Ретацел регулятор роста инструкция по применению

Выходной сигнал регулятора u(t) определяется по следующей формуле:

  • P — пропорциональная составляющая;
  • I — интегрирующая составляющая;
  • D — дифференцирующая составляющая;
  • Kp — пропорциональный коэффициент;
  • Ki — интегральный коэффициент;
  • Kd — дифференциальный коэффициент;
  • e(t) — ошибка рассогласования.

Задачи ПИД-регулятора в системах АСУ ТП

Основная задача ПИД-регулятора состоит в поддержании определенного значения параметра технологического процесса на заданном уровне. То есть, говоря простым языком, задача ПИД-регулятора заключается в том, чтобы учитывая полученные значения с датчиков (обратная связь), воздействовать на объект управления, плавно подводя регулируемое значение к заданным уставкам. Применение ПИД-регуляторов целесообразно, а зачастую, и единственно возможно в процессах, где необходима высокая точность переходных процессов, непрерывный контроль и регулирование заданных параметров, а также там, где недопустимы значительные колебания в системе.

Сравнение ПИД —регулятора с позиционным регулированием

В системах АСУ ТП наибольшее распространение получили два типа регуляторов — двухпозиционный и ПИД.

Двухпозиционный регулятор наиболее простой в использовании и широко распространенный. Он сравнивает значение входной величины с заданным параметром уставки. Если значение измеренной величины ниже заданного значения уставки, регулятор включает исполнительное устройство; при превышении заданного значения, исполнительное устройство выключается. Для предотвращения слишком частого срабатывания устройства вследствие колебаний системы и, следовательно, изменении значений, задается минимальный и максимальный порог срабатывания — гистерезис, или по-другому — зона нечувствительности, мертвая зона, дифференциал. Например, нам необходимо поддерживать температуру в 15 °С. Если гистерезис задан 2°, то регулятор будет включать нагрев при 14 и отключать соответственно при 16.

Чем меньше значение гистерезиса, тем точнее будет процесс регулирования, но увеличивается частота срабатывания ,что, в конечном итоге, приводит к износу коммутационных аппаратов. Увеличение гистерезиса уменьшит частоту переключений, но при этом увеличивается амплитуда колебаний регулируемого параметра, что приведет к ухудшению точности регулирования.

Так или иначе, при таком типе регулирования происходят незатухающие колебания, частота и амплитуда которых зависит от параметров системы. Поэтому данный метод обеспечивает хороший результат в системах, обладающих инерционностью и малым запаздыванием. В частности, такой метод широко применяется при регулировании температуры в нагревательных печах.

В отличие от двухпозиционного, с помощью ПИД-регулятора удается свести колебания системы к минимуму, благодаря тому, что при таком методе регулирования учитываются различные значения системы:

  • фактическая величина,
  • заданное значение,
  • разность,
  • скорость.

Это позволяет стабилизировать систему и добиться повышения точности в десятки раз по сравнению с двухпозиционным методом. Конечно, здесь многое зависит от правильно подобранных коэффициентов ПИД-регулятора.

Для того, чтобы правильно выбрать необходимый тип регулятора необходимо хотя бы приблизительно знать характеристики управляемого объекта, требования к точности регулирования и характер возмущений, воздействующих на объект регулирования.

Составляющие ПИД-регулятора

В стандартном ПИД-регуляторе есть три составляющие и каждая из них по своему воздействует на управление.

Пропорциональная P(t)=Kp*e(t)

Учитывает величину рассогласования заданного значения и фактического. Чем больше отклонения значения, тем больше будет выходной сигнал, то есть, пропорциональная составляющая пытается компенсировать эту разницу.

Однако пропорциональный регулятор не способен компенсировать полностью ошибку рассогласования. Всегда будет присутствовать так называемая статическая ошибка, которая равна такому отклонению регулируемой величины, которое обеспечивает выходной сигнал, стабилизирующий выходную величину именно на этом значении. При увеличении коэффициента пропорциональности Kp статическая ошибка уменьшается, но могут возникнуть автоколебания и снижение устойчивости системы.

Интегральная I(t)=Ki ∫e(t)dt

Интегральная составляющая используется для устранения статической ошибки. Она складывает значение предыдущих ошибок рассогласования и компенсирует их. Можно сказать — учится на предыдущих ошибках. То есть, ошибка рассогласования умножается на коэффициент интегрирования и прибавляется к предыдущему значению интегрирующего звена. При выходе системы на заданный режим, интегральная составляющая перестает изменяться и не оказывает какого-либо серьезного воздействия на систему. Физически интегральная составляющая представляет задержку реакции регулятора на изменение величины рассогласования, внося в систему некоторую инерционность, что может быть полезно для управления объектами c большой чувствительностью.

Дифференциальная D(t)=Kd de(t)/dt

Дифференциальная составляющая учитывает скорость изменения регулируемой величины, противодействуя предполагаемым отклонениям, вызванными возмущениями системы или запаздыванием. И чем больше будет величина отклоняться от заданной, тем сильнее будет противодействие, оказываемое дифференциальной составляющей. То есть, она предугадывает поведение системы в будущем. При достижении величины рассогласования постоянного значения дифференциальная составляющая перестает оказывать воздействие на управляющий сигнал.

На практике какая-либо из составляющих может не использоваться (чаще всего Д-дифференциальная) и тогда мы получаем П- и ПИ-регулятор.

Методика настройки ПИД-регулятора

Выбор алгоритма управления и его настройка является основной задачей в процессе проектирования и последующего удовлетворительного запуска агрегата в промышленную или иную эксплуатацию. В основе методики лежит закон Циглера-Никольса, являющийся эмпирическим и основанным на использовании данных, полученных экспериментально на реальном объекте. В результате ознакомления с методикой, а также при близком рассмотрении объектов регулирования, были выбраны формулы и коэффициенты, ближе всего подходящие к реальному объекту регулирования.

Объект регулирования — камерная электрическая печь. Число зон регулирования от 24 до 40. Каждая зона есть набор электронагревателей. Материал нагревателей нихром. Тип — проволочные, навитые на керамические трубки. Требование: поддержание температуры по зонам печи ±5 °C.

Настройка пропорциональной компоненты (X p)

Перед настройкой зоны пропорциональности интегральная и дифференциальная компоненты отключаются:

  • Постоянная интегрирования устанавливается минимально возможной (Т и=0).
  • Постоянная дифференцирования минимально возможной (Т д=0).
  • Т ο — начальная температура в системе;
  • Т sp — заданная температура (уставка);
  • ∆T — размах колебаний температуры;
  • ∆t — период колебаний температуры.

Меняем значение пропорциональной составляющей X p от минимума (0) до момента, пока не появятся устойчивые колебания системы с периодом ∆t. Система должна находится в постоянном колебательном процессе, притом колебательный процесс незатухающий, где ∆T — характеристика колебания, равная значению величины рассогласования (±10 °C, или как по заданию). Колебания должны быть одинаковы от Т sp.

После получения данной кривой на нашем объекте, засекаем время периода колебаний ∆t — полный период. Данное время — характеристика системы, оборудования.

Используя полученные параметры, рассчитываем Т и и Т д.

Зона пропорциональности Коэффициент передачи Постоянная времени интегрирования Постоянная времени дифференцирования
П-регулятор 2⋅PBs 0.5⋅X p
ПИ-регулятор 2.2⋅PBs 0.45⋅X p 0.83⋅ ∆T
ПИД-регулятор 1.67⋅PBs 0.6⋅X p 0.5⋅ ∆T 0.125⋅ ∆T

Цифры в формулах для расчета коэффициентов ПИД-регулирования скорректированы на основе запуска камерной электрической печи в опытно-промышленную эксплуатацию. И, конечно, в зависимости от типа объекта регулирования, могут незначительно меняться.

Вывод

Благодаря достаточно высоким получаемым результатам ПИД-регуляторы нашли широкое применение в системах автоматического управления. При этом важно подчеркнуть, что настройка ПИД-регулятора является процессом довольно трудоемким и требует определенных знаний и индивидуального подхода для различных объектов управления.

Источник