Меню

Переменный ток мощность переменного тока цепи переменного тока

Мощность переменного тока — понятие, виды и формулы

Общее понятие

Электрическое напряжение определяется как отношение работы поля по переброске пробного заряда из одной заданной точки в другую к размеру потенциала. При дислокации единичного резерва выполняется работа, которая равняется напряжению на искомом участке. Общая мощность получают умножением работы электрического поля для единичного заряда на число потенциалов за определенную единицу времени.

В переменной электрической цепи выделяется 3 вида мощности:

  • активный P;
  • реактивный Q;
  • полного типа S.

В цепи переменного электричества формула для расчета постоянного тока применяется только для вычисления мгновенной мощности. Этот показатель претерпевает изменения во времени и почти не имеет практического смысла для всех остальных расчетов. Среднезначимый показатель мощности требует временной интеграции. Мгновенная мощность объединяется в течение определенного промежутка для расчета величины в магистрали с периодическим изменением силы переменного потока и синусоидального напряжения.

Применяется концепция комплексных чисел для связывания всех трех видов мощности. Это понятие обозначает, что в переменной цепи нагрузка выражается подобным числом так, что активная разновидность представляется действительной составляющей. Реактивный показатель выступает мнимым показателем, а полная мощность показывается в форме модуля. В этих расчетах принимает участие угол сдвига фаз φ, который является аргументом баланса мощностей в цепи переменного тока.

Активная мощность

Активная скорость преобразования выражается также через взаимное отношение силы потока, напряжения к значению активной составляющей сопротивления. В магистрали синусоидального и несинусоидального движения электронов активная нагрузка приравнивается к сумме аналогичных значений на отдельных участках.

Для определения среднего периодического размера используется активная мощность переменного тока, формула расчета P = U . I . cos φ (косинус), где:

  1. U — мощность.
  2. I — сила потока.
  3. φ — угол смещения фаз.

Средний показатель мгновенной скорости преобразования в однофазной цепи берется в виде среднеквадратичного значения тока и напряжения с определенным углом сдвига. В цепях несинусоидального электричества мощность приравнивается к сумме соответствующих показателей отдельных перемещений. С помощью активной мощности характеризуется интенсивность необратимого видоизменения электроэнергии в другие разновидности, например, электромагнитную или тепловую.

Проходящая мощность используется в качестве активной в концепции длинных магистралей для анализа электромагнитных течений, протяженность которых сопоставляется с размерностью волны. Искомое значение рассчитывается как разница между понижающейся и отражающейся мощностями. От свойств коэффициента углового смещения зависят полученные показатели отрицательной или положительной нагрузки активного типа.

Реактивная характеристика

Для обозначения применяется дополнительно единица вольт-ампер реактивный (вар). В русских аналогах используется вар, а международные специалисты применяют var. В РФ единица допускается для электротехнических расчетов в форме внесистемного значения.

Нахождение производится по формуле P = U . I . sin φ (синус), где:

  1. U — среднеквадратичная мощность.
  2. I — среднеквадратичная сила потока.
  3. φ — угол фазного смещения, значения синуса, определяются по таблицам.

При диапазоне показателя от 0 до 90º (ток отстает от напряжения, а нагрузка носит активно-индуктивный вид) синус φ будет иметь положительное значение. При угловом сдвиге от 0 до -90º (поток электронов опережает нагрузку, мощность отличается активно-емкостным свойством) константа всегда показывает отрицательный знак. Реактивная мощность характеризует напряженность, которая возникает в электромеханических приборах и цепях при изменении энергетических волн поля в магистрали переменного синусоидального потока.

В физическом смысле реактивная нагрузка показывает энергию, которая перекачивается от источника тока на конденсаторы, индукторы, двигательные обмотки, а впоследствии возвращается к источнику за один колебательный период. Реактивная мощность не принимает участия в работе электротока. В случае положительной характеристики устройство потребляет, а нагрузка с отрицательным знаком говорит о производстве энергии.

Это обстоятельство рассматривается в условном контексте, т. к. почти все энергопотребляющие приборы, например, двигатели асинхронной работы, а также полезная нагрузка, подаваемая через трансформатор, относятся к активно-индуктивным видам. Синхронные двигатели электростанций одновременно производят и потребляют энергию в зависимости от максимальной величины электротока возбуждения в роторных обмотках. Эта особенность применяется для координации уровня нагрузки в магистрали в электротехнике.

С помощью современных преобразователей производится компенсация реактивной нагрузки во избежание перегрузок и для увеличения коэффициента мощности электроустановок. Приборы более точно оценивают размер энергии, которая поступает в обратном направлении от индуктора к источнику переменного тока.

Полная нагрузка

Показатель используется в физике для описания потребляемой мощности, которая прилагается к подводящим агрегатам электросети с использованием резисторов. Суммируются параметры ЭДС распределительных щитков, кабелей, проводов, ЛЭП, трансформаторов.

Полную нагрузку можно рассчитать по формуле S = U . I, где:

  1. S — параметр полной нагрузки (В/а).
  2. U — расчетная нагрузка в генераторе.
  3. I — комплексный показатель силы тока в сочетании с обмоточным значением.

Параметр темпа преобразований зависит от характеристик применяемого тока, а не от свойств фактически использованной нагрузки. По этой причине полная мощность распределительных электрощитов и трансформаторных агрегатов измеряется в вольт-амперах, а значение ватт к ней не применяется.

Работа в различных условиях

Модуль комплексного показателя интенсивности передвижения равняется показателю полной нагрузки. Действительная составляющая часть приравнивается к активной силе, а мнимая считается реактивным видом. Имеет место положительный или отрицательный знак, что зависит от интенсивности загруженности цепи. Комплексная мощность должна соответствовать сопряженному электрическому сопротивлению. Положительная нагрузка характеризуется соотношением Р > 0, а знак минус проявляется в случае Р

Читайте также:  Усилитель мощности an7117 с предварительным усилителем taa3210

Коэффициент скорости преобразования

Мощностной коэффициент является показателем потребления тока при присутствии реактивного компонента и искажающей нагрузки. Значение коэффициента отличается от понятия косинуса сдвигаемого угла. Второе понятие характеризуется смещением протекающего переменного тока, напряжения и используется только при синусоидальном токе и силе равного значения.

Коэффициент равняется отношению расходуемой нагрузки к ее полному значению. При этом работа совершается за счет активного вида преобразования. При синусоидальном токе и вольтаже полная нагрузка находится в виде суммы реактивной и активной форм. Активная нагрузка приравнивается к усредненному произведению силы тока и напряжения и не может быть выше произведения аналогичных среднеквадратических размерностей. Мощностной коэффициент показывается в диапазоне от 0 до 1 или ставится в процентах от 0 до 100.

При математическом расчете числовой множитель интерпретируется в качестве косинуса угла между токовыми векторами и направлением приложения вольтажа. Поэтому при синусоидальных характеристиках размерность коэффициента может совпадать с косинусом угла. Если применяется только синусоидальный вольтаж, а ток используется несинусоидальный с нагрузкой без реактивного компонента, то числовой переходник равняется части нагрузки при первых искажениях потребительского тока.

Если реактивный элемент присутствует в нагрузке, то, помимо мощностного коэффициента, указывается характер работы (емкостно-активный или индуктивно-активный). Коэффициент в этих случаях отличается и является отстающим или опережающим значением.

Практическое применение и коррекция

Если к розетке с синусоидальным напряжением 50 Гц и 230 В подсоединить нагрузку с опережением или отставанием тока от напряжения на какую-то угловую величину, то на активной внутренней катушке будет создаваться увеличенная мощность. Это значит, что при работе в таких условиях выделяется много тепла, и электростанция отводит его в увеличенном количестве, по сравнению с применением активной нагрузки.

Коэффициенты полезного действия и мощности отличаются друг от друга. Мощностной показатель не влияет на потребление приемника, подключенного к сети, но изменяет энергетические потери в подводных проводах и местах выработки энергии или ее преобразования. В доме электросчетчик не реагирует на проявление мощности, так как оплачивается только та энергия, за счет которой работают приборы.

КПД влияет на потребляемую активную нагрузку. Например, энергосберегающая лампа потребляет в полтора раза больше электричества, чем аналогичный прибор накаливания. Это говорит о высоком коэффициенте полезного действия у первой лампы. Но показатель нагрузки может быть низким и высоким в обоих вариантах.

Коррекция заключается в приведении потребления прибора с низким мощностным коэффициентом к стандартным показателям при питании от силовой цепи переменного тока. Технически это осуществляется применением действенной схемы на входном устройстве, которая помогает равномерно использовать фазную мощность и исключает перегрузку нулевого провода. При этом снижаются всплески потребительского тока на верхушке синусоиды питающего вольтажа.

Реактивная нагрузка корректируется при включении в магистраль элемента с обратным действием. Например, в двигателе переменного тока для компенсации действия ставится конденсатор параллельно питающей линии. Применяется система активного или пассивного корректора при изменении используемого тока во время колебательного периода подпитывающего напряжения для преобразования коэффициента. Простым примером является последовательное подключение дросселя. При этом конечные приборы потребляют ток непропорционально гармоничным искажениям. Катушка сглаживает волновые импульсы.

Источник



Мощность в цепях переменного тока

date image2015-10-22
views image34216

facebook icon vkontakte icon twitter icon odnoklasniki icon

В цепях переменного тока различают три вида мощностей: активную Р, реактивную Q и полную S.

Активная мощность вычисляется по формуле:

Активную мощность потребляет резистивный элемент. Единица измерения активной мощности называется Ватт (Вт), производная единица – килоВатт (кВт), равная 10 3 Вт.

Реактивная мощность вычисляется по формуле:

Реактивная мощность потребляется идеальным индуктивным и

емкостным элементами. Единица измерения реактивной мощности называется Вольт-Ампер реактивный (Вар), производная единица – килоВАр (кВАр), равная 10 3 ВАр.

Полная мощность потребляется полным сопротивлением и обозначается буквой S:

Единица измерения полной мощности называется ВА (Вольт-Ампер), производная единица – килоВольт-Ампер (кВА), равная 10 3 ВА.

Читайте также:  Atx мощность линии 12

По сути, размерность у всех выше перечисленных единиц измерения одинакова – . Разные название этих единиц нужны, чтобы различать эти виды мощности.

Проявляются различные виды мощности по-разному. Активная мощность необратимо преобразуется в другие виды мощности (например, тепловую, механическую). Реактивная мощность обратимо циркулирует в электрических цепях: энергия электрического поля конденсатора преобразуется в энергию магнитного поля, и наоборот. «Извлечь» реактивную мощность с «пользой для дела» невозможно.

Из формул (2.19) – (2.21) следует, что между активной, реактивной и полной мощностью имеет место соотношение:

Соотношение между P, Q и S можно интерпретировать как соотношение сторон прямоугольного треугольника (вспомните треугольник сопротивлений, треугольник напряжений – все эти треугольники подобны).

Из рис. 2.10 видно, что cosφ = (2.24)

Отсюда вытекает определение одной из основных характеристик цепей переменного тока – коэффициента мощности. Специального обозначения он не получил.

Коэффициент мощности показывает, какую долю полной мощности составляет активная мощность.

Желательно, чтобы коэффициент мощности цепи был как можно больше, т.е. приближался к 1. Реально предприятия электрических сетей устанавливают такое ограничение для промышленных предприятий : соs φ = (0,92-0,95). Достигать значений соs φ >0,95 рискованно, так как разность фаз φ при этом может скачком перейти от положительных значений к отрицательным, что вредно для электрооборудования. Если соsφ 0 до 90 0 . Следовательно, увеличить соsφ – значит уменьшить разность фаз , то есть уменьшить (ХLС).

Если влиять на (ХLС), меняя С и L, то это приведет к увеличению тока в последовательной цепи и изменению режима работы оборудования, поэтому такой способ практически не применяется. В следующем разделе рассмотрен другой способ повышения коэффициента мощности.

Цепь переменного тока с параллельным соединением ветвей.

Рассмотрим электрическую цепь с двумя параллельными ветвями (рис. 2.11). Полученные выводы распространим на цепь с любым количеством ветвей. К цепи, содержащей две параллельные ветви, включающие активные, индуктивные и емкостные элементы (R1, L1, C1 и R2, L2, C2 cоответственно), подводится переменное напряжение U частоты f.

Прямая задача: Заданы все Обратная задача: Заданы свойства входящие в цепь элементы. цепи. Найти неизвестные элементы Найти все токи и разности цепи (эта задача решена в лаборафаз. торной работе Ц-5)

Решим прямую задачу, то есть найдем токи I1, I2 и общий ток I .

Рис. 2.11. Электрическая цепь с двумя параллельными ветвями

Из второго закона Кирхгофа следует, что напряжения на параллельных участках цепи одинаковы:

На основании закона Ома найдем токи I1 и I2 :

Найдем также разности фаз тока и напряжения для каждой ветви:

На основании первого закона Кирхгофа применительно к узлу А можно записать:

Таким образом, для определения тока I необходимо векторно сложить токи I1 и I2. В качестве опорного вектора удобно выбрать вектор напряжения .

Предположим, что при расчете разностей фаз тока и напряжения в ветвях цепи оказалось, что φ1>0, а φ2 под углом φ1 к вектору , и вектор под углом φ2 к вектору . Графически складываем эти векторы (см. рис.2.12). Величина тока определяется длиной полученного вектора с учетом выбранного масштаба. Разность фаз неразветвленного участка цепи определяется углом между векторами и

Источник

Как найти мощность в цепи переменного тока

Мощность в цепи переменного тока — это совсем не то же самое, что мощность в цепи тока постоянного. Всем известно, что постоянный ток способен нагревать активную нагрузку R. А если постоянным током начать питать цепь содержащую конденсатор C, то стоит только ему зарядиться, как этот конденсатор больше тока через цепь не пропустит.

Катушка L в цепи постоянного тока вообще может проявить себя подобно магниту, особенно если в ней присутствует ферромагнитный сердечник. При этом провод катушки, обладая активным сопротивлением, никак не будет отличаться от резистора R, включенного последовательно с катушкой (и имеющего такой же номинал, что и омическое сопротивление провода катушки).

Так или иначе, в цепи постоянного тока, где нагрузка состоит лишь из пассивных элементов, переходные процессы заканчиваются практически сразу после начала ее питания, и больше себя не проявляют.

Переменный ток и реактивные элементы

Переменный ток

Что же касается цепи тока переменного, то в ней переходные процессы имеют важнейшее, если не сказать решающее, значение, и каждый элемент такой цепи, способный не только рассеивать энергию в форме тепла или механической работы, но могущий хотя бы как-то накапливать энергию в форме электрического или магнитного полей, будет влиять на ток, оказывая некую нелинейную реакцию, зависящую не только от амплитуды прикладываемого напряжения, но и от частоты пропускаемого тока.

Читайте также:  Как мы переплачиваем за мощность

Таким образом, при переменном токе мощность не только рассеивается в форме тепла на активных элементах, но часть энергии попеременно то накапливается, то возвращается обратно к источнику питания. Это значит, что емкостные и индуктивные элементы сопротивляются прохождению переменного тока.

В цепи синусоидального переменного тока конденсатор сначала за пол периода заряжается, а в следующие пол периода — разряжается, отдавая заряд обратно в сеть, и так каждые пол периода сетевой синусоиды. Катушка индуктивности в цепи переменного тока в первую четверть периода создает магнитное поле, а в следующие четверть периода это магнитное поле уменьшается, энергия в форме тока возвращается обратно к источнику. Так ведут себя чисто емкостная и чисто индуктивная нагрузки.

В чисто емкостной нагрузке ток опережает напряжение на четверть периода сетевой синусоиды, то есть на 90 градусов, если смотреть тригонометрически (когда напряжение на конденсаторе достигло максимума, ток через него равен нулю, а когда напряжение начнет переходить через ноль, то ток в цепи нагрузки будет максимальным).

В чисто индуктивной нагрузке ток отстает от напряжения на 90 градусов, то есть на четверть периода синусоиды задерживается (когда напряжение приложенное к индуктивности максимально, ток только начинает нарастать). У чисто активной нагрузки ток и напряжение друг от друга в каждый момент времени не отстают, то есть находятся строго в фазе.

Полная, реактивная и активная мощности, коэффициент мощности

Полная, реактивная и активная мощности, коэффициент мощности

Получается, что если нагрузка в цепи переменного тока не идеально активная, то в ней обязательно присутствуют реактивные компоненты: обладающие индуктивной составляющей обмотки трансформаторов и электрических машин, обладающие емкостной составляющей конденсаторы и другие емкостные элементы, даже просто индуктивности проводов и т. п.

В результате в цепи переменного тока напряжение и ток находятся не в фазе (не в одной и той же фазе, это значит, что их максимумы и минимумы не совпадают максимум — с максимумом, а минимум — с минимумом точь-в-точь), и всегда есть некоторое отставание тока от напряжения на определенный угол, который принято называть фи. А величину косинуса фи называют коэффициентом мощности, потому что косинус фи — это фактически отношение активной мощности R, безвозвратно расходуемой в цепи нагрузки, к полной мощности S, которая обязательно проходит через нагрузку.

Полную мощность S источник переменного напряжения подает в цепь нагрузки, часть этой полной мощности возвращается каждые четверть периода обратно к источнику (эта возвращаемая и кочующая туда-сюда часть называется реактивной составляющей Q), а часть расходуется в виде активной мощности P — в форме тепла или механической работы.

Чтобы нагрузка, содержащая реактивные элементы, могла бы работать по своему назначению, к ней необходимо подавать от источника электрическую мощность в размере именно полной мощности.

Как вычислить полную мощность в цепи переменного тока

Чтобы измерить полную мощность S нагрузки в цепи переменного тока, достаточно перемножить ток I и напряжение U, точнее их средние (действующие) значения, которые несложно измерить вольтметром и амперметром переменного тока (эти приборы показывают именно среднее, действующее значение, которое для двухпроводной однофазной сети меньше амплитуды в 1,414 раза). Таким образом вы узнаете, какая мощность подается от источника к приемнику. Средние значения берутся потому, что в обычной сети ток синусоидальный, а получить нам необходимо точное значение энергии, потребляемой каждую секунду.

Как вычислить активную мощность в цепи переменного тока

Коэффициент мощности

Если нагрузка имеет чисто активный характер, к примеру это нагревательная спираль из нихрома или лампа накаливания, то можно просто перемножить показания амперметра и вольтметра, это и будет активная потребляемая мощность P. Но если нагрузка имеет активно-реактивный характер, то для расчета потребуется знать косинус фи, то есть коэффициент мощности.

Специальный электроизмерительный прибор — фазометр, позволит измерить косинус фи напрямую, то есть получить численное значение коэффициента мощности. Зная косинус фи, останется умножить его на полную мощность S, способ вычисления которой описан в предыдущем абзаце. Это и будет активная мощность, активный компонент потребляемой от сети мощности.

Как вычислить реактивную мощность

Полная мощность

Для нахождения реактивной мощности, достаточно воспользоваться следствием из теоремы Пифагора, задавшись треугольником мощностей или просто умножив полную мощность на синус фи.

Источник

Adblock
detector