Меню

Первичная обмотка трансформатора включенного в цепь переменного тока с напряжением 220в

Как подключать понижающие трансформаторы 220/36 или 220/12 В

Понижающие трансформаторы напряжения затребованы, а порой незаменимые в условиях, когда есть риск ударов тока из-за неблагоприятной среды, например, во влажных помещениях. В таких ситуациях используют модели указанных аппаратов, в том числе на 36 Вольт. Таким образом, если возникнет контакт с электросетью, удар будет незначительный, кроме того, меньшая вероятность, что он повредит другие приборы. Есть готовые модули — ЯТП (ящик с понижающим трансформатором, подробности далее в статье), — для которых не надо разбираться с контактами. Но сам понижающий трансформатор (ТН) 220/36 В — это прибор, который нельзя сразу воткнуть в розетку без подготовки, надо знать, как его соединять с проводкой. Рассмотрим правила, варианты подсоединения, подготовительные действия, предостережения.

понижающий трансформатор

Что такое понижающий трансформатор 220/36 В

Для чего нужен понижающий трансформатор:

  • помещения, где по правилам безопасности запрещены высокие токи, присутствующие в обычной сети 220 Вольт (переменное напряжение). Это, например, освещение в саунах, банях, ванных, гаражных ямах, где затребован перевод на низковольтное питание;
  • для условий, в которых затребован уменьшенный вольтаж в связи с особенностями запитываемых приборов. Часто через аппарат подключают паяльники на 36 Вольт. Удар током будет незначительным, не причинит вреда человеку;
  • для безопасности вольтаж понижают при временных ремонтных работах.

Электромагнитный трансформатор

Рассматриваемые приборы, если это не модуль (ЯТП), нельзя сразу взять и подключить к розетке, поскольку они без защитного корпуса, видны их элементы — обмотки первичная и вторичная, магнитопровод, контакты. Такие преобразователи подсоединяются проводами, поэтому пользователь должен ознакомиться, к каким виткам подключать сеть 220, какие контакты служат для выхода к потребителям уже преобразованного в 36 В напряжения.

Понижающие модели являются обычными трансформаторами, работающими по стандартным принципам, только эти аппараты преобразовывают переменное напряжение (а такое имеет обычная сеть в 220 В) в меньшее. Если определенное для безопасности (влажность, ремонт) надо понизить вольтаж линии 220 В до 24, 45 и так далее, а в нашем случае до 36 В, то ставят отдельные такие узлы, на вход которых подается 220 В, а на выходе получаем указанное или другое заданное значение.

понижающий трансформатор 220-12

Типы трансформаторов

Есть разные виды понижающих ТН. Привычный и наиболее распространенный — однофазный для сети 220 В. Есть также двух- и трехфазные для 380 В. Самый стандартный состав: две обмотки и шихтованная сердцевина с электротехнической стали.

Отдельные типы ТН снабжены 1 обмоткой — это автотрансформаторы, они также могут понижать/повышать. В таком случае есть как минимум 3 вывода. К одной паре контактов делают подключение 220 В, съем выходного значения — с одной из входных пар клемм и из другой оставшейся свободной. Но во влажных помещениях автотрансформаторы применять нельзя, так как катушки в них соединенные, то есть потребитель также подключен к 220 В.

автотрансформатор

Особенности конструкции

Проводник, он же магнитопровод или сердечник, бывает закругленным, прямоугольным (шина). По вариантам намотки изделие может быть концентрическим (на стержне), дисковым (намотанное чередованием). Есть модели с 1 катушкой, включающей 2 типа витков (один поверх другого) или с 2 (чаще) и больше, размещенными на отдалении.

Как выбрать

Нужный нам ТН на маркировке должен иметь обозначение для входных контактов 220 В, на выходе — двенадцать вольт или другой вольтаж под наши запросы. Другие модели могут быть предназначены, для 380 В, для 2-, 3-фазных сетей.

трансформатор

При подборе надо сложить мощности всех потребителей на обслуживаемой линии и сопоставить с той цифрой (кВа), на которую рассчитан трансформатор, добавив 20 % запаса.

Какие инструменты понадобятся для подключения ТН

Подготавливают инструменты. Вольтметром, мультиметром надо будет проверить параметры устройства, силовым кабелем сделать соединение. Потребуется изоляция (изолента), пропарафиненная (парафинированная) бумага или калька и обычные для таких процедур инструменты: отвертки, плоскогубцы, кусачки и прочее.

пропарафиненная (парафинированная) бумага

Особенности подключения

Рассмотрим основы как рассчитать, подключить понижающий трансформатор 220 36. Важно подсоединяться к катушкам аппарата в строгом соответствии с их назначением, учитывая потребности в конкретной ситуации. В зависимости от того, куда подключают нагрузку и 220 В аппарат будет либо понижателем, либо повышателем. А некорректное объединение контактов обмоток приведет к быстрому выходу ТН из строя (перегрев, КЗ).

ТН подсоединяется параллельно нагрузке, его цель — трансформировать входное напряжение с определенным коэффициентом, который, если упростить, равен соотношению витков. Когда их количество у таковой первичной (сетевой) меньше, чем у вторичной, то на выходе значение понижается. У повышающего ТН наоборот — витков вторички (нагрузочной катушки) больше. Необходимо отметить, что когда нагрузка увеличивается, то коэфф. соотношения понижается, на что также влияет сечение проводков обмотки.

понижающий трансформатор 220 12

У сложных изделий количество катушек превышает 2, каждая со своим коэфф. трансформации, причем часть из них понижает, часть — повышает. Любой трансформатор может работать в обратном режиме: когда на нагрузочную намотку подается переменное напряжение, получаем его на выходе первички с тем же коэффициентом преобразования.

Как подключить понижающий трансформатор

  1. Удостоверяются, что используемый аппарат именно трансформатор напряжения (есть еще токовые). Для подсоединения нагрузки выбирать надо катушку с самим большим числом витков и сопротивлением.
  2. У анодно-накальных вариантов устройств есть обмотки всех видов. Узнать первичку можно, посмотрев на ее выводы — они обычно на отдалении от остальных. Иногда такие витки обособлены в другом сегменте каркаса, тогда узнать ее еще проще. Также в интернете есть много тематических форумов, поэтому уточнить там параметры прибора и где какой вывод не составит труда.
  3. Обязательно проверяют величину напряжения, частоту ТН — должно быть 220 В и 50 Гц.
  4. Иногда у сетевой обмотки есть 3 вывода, один из них для сети 110 или 127 В. Наша цель — скомбинировать их так, чтобы сопротивление было максимальным, и именно на них надо подавать 220 В.
  5. Если ввода не 3, а 4, то это модель с 2 катушками, которые соединяют перемычкой из проводка последовательно, синфазно. Вначале делают его, затем обмотки подключаются к вольтметру с пределом 500 В. Далее, на одну из нагрузочных обмоток дают несколько Вольт (можно применить батарейку). Нельзя касаться выводов сетевых витков при этом.
  6. Записывают результаты тестера, отключают его, меняют местами выводы любой из первой катушки, повторяют процесс.
  7. Выбирают вариант с наибольшим значением.

обмотка

Если обмотка одна, ее желательно присоединять к сети через предохранитель. Номинал по току подбирается под трансформатор — не больше 0.05 А на 10 Вт.

Порядок подсоединения

Само включение элементарное. Достаточно помнить главные правила:

  1. К контактам вторичной катушки подсоединяют нагрузку, затем на первичку подают 220 В. Аппарат для этого можно подключить напрямую к проводке (скруткой, клеммами), в том числе и непосредственно в щитке, или снабдить его выводы шнуром с вилкой к розетке 220 В и наружной розеткой для подключаемых приборов.
  2. Нагрузка идет к обмотке с большим сопротивлением.

Порядок подсоединения

Главное в подключении — не перепутать обмотки и выводы, учесть принцип работы понижающего трансформатора 12, 24, 36 В: нагрузка идет к вторичке и если она имеет несколько контактов, то на выходе можно получить разный вольтаж, например, не 36, а 24 В. Поэтому требуется проверка вольтметром, мультиметром, как описано в предыдущем разделе.

Наглядный пример с иллюстрациями

Схема обычного трансформатора:

Схема обычного трансформатора

Вход — это первичка, туда подается 220 В. Как видно на схеме, у некоторых ТН есть выводы и на 110 В. С выхода снимается уже 36 В или иной уменьшенный вольтаж.

Схема обычного трансформатора 2

Потребители, запитываемые постоянным током, должны иметь выпрямитель, диодный мост и прочее, — это будет уже блок питания, для ламп накаливания этого не нужно.

Схема обычного трансформатора 3

Расчет должен учесть, что у некоторых трансформаторов есть две раздельные обмотки на выходе, которые нужно соединить внешним проводом.

две раздельные обмотки

В нашем случае модель обычная, на изображении ТН расположен соответственно схеме: большая катушка — вход (тут два контакта для 220 В), меньшая — выход.

большая катушка – вход

Если земерить тестером (режим на отметке 2000 Ом), то сопротивление больше на первичке, чем на вторичке, таким образом определяем где какие витки.

земерить тестером

Есть трансформаторы с двумя одинаковыми обмотками — на одной 110 В и на другой также 110 В. Для получения 220 В их надо правильно соединить, иначе получится короткое замыкание. Соединяют выход как показано на изображении: нижний контакт к нижнему. Аналогично подсоединяем два проводка от сети 220 В и меряем сопротивление (второе фото).

меряем сопротивление

Вторичка намотана в данном случае сверху (то есть, тут две катушки, но каждая включает и сетевую, и нагрузочную). В ней можно соединять выводы двух намоток как угодно, но если сделать это не по порядку, то увеличится сила тока в 2 раза. Если же соединить последовательно (положение пальцев на фото), то, например, расчет будет таким: 18 В + 18 В = 36 В, что нам и требуется. Такие преобразователи удобные в определенных условиях: можно либо увеличивать ток в 2 раза, либо напряжение (уже уменьшенную величину, на выходе).

Вторичка намотана

Есть также трансформаторы с множеством контактов для входа (первичка, первое изобр.) и выхода (второе фото), снять с которого можно разное напряжение в зависимости от порядка соединения их контактов. Принцип комбинации подобный вышеописанному, но мы не будем тут указывать его конкретно, поскольку моделей таких изделий много. Проще всего пользователю обратиться к паспорту изделия или на спецфорумы. На 1 фото замеры сопротивления на первичке, но подключаться нагрузкой надо к вторичке (2 и 3 фото), а она будет иметь больший показатель.

Читайте также:  Емкость в цепи переменного тока закон ома для цепей переменного тока

трансформаторы с множеством контактов для входа

Готовые решения — ящики ЯТП

ЯТП — это понижающий трансформатор сразу готовый к подключению, модуль. Не надо разбираться с выводами, вводами, обмотками. На изделии есть соответствующие промаркированные розетки для требуемой нагрузки 36 В или иной. Достаточно включить его кабель в сеть 220 В и подсоединить в розетку на корпусе потребителя.

ЯТП могут выдавать любой вольтаж пониженного значения — 24, 36, 42 В. Часто они используются для временных, ремонтных работ. Есть модели, позволяющие регулировать выходное напряжение.

ящики ЯТП

Как самому собрать понижающий трансформатор

Первым этапом сборки для ТН будет расчет. Затем рассмотрим сам процесс.

Исчисления

Задаем исходные данные для преобразователя 220/12 В:

  • вход/выход — 220/12 В;
  • площадь попер. сечен. сердечн. S = 6 кв. см.

Расчет числа витков катушки:

Расчет числа витков катушки

Первичка N1 = 60×220/6 = 2200 витков

Вторичка N2 = 60×12/6 = 120 витков.

Первичка и Вторичка

Сборка

  • медная проволока в шелковой/бумажной изоляции: для первички — сечение 0.3 мм², для вторички — 1 мм². Для последней цифры подключаемая нагрузка в цепи должна иметь до 10 А. В продаже есть также специальный обмоточный провод (эмальпровод), его также можно снять с других трансформаторов. Также допустимо применить обычную медную жилу в пластиковой изоляции;
  • 5–6 шт., или больше по потребности, консервных банок: их жесть применим для создания сердечника;
  • картон — толстый, жесткий;
  • лакоткань (ленточная изоляция);
  • парафинированная бумага.

пэтв-2

Этапы

Порядок как сделать трансформатор своими руками:

  • из банок вырезают 80 полос 30×2 см. Жесть подвергают отжигу: раскаливают в печи, оставляют остывать там. Суть именно в постепенном, как можно более медленном охлаждении: сталь размягчается и теряет упругость;
  • пластины очищают, покрывают лаком, каждая оклеивается с одной стороны тонкой бумагой — папиросной, с парафином, калькой;
  • из картона делают каркас под обмотки. Он состоит из ствола и щечек, обматывается несколькими слоями парафинированной бумаги, ее можно заменить на чертежную кальку;
  • виток к витку наматывают проволоку, через каждые 2–3 слоя прокладывают пропарафиненную изоляцию;
  • после окончания намотки первички фиксируют концы жилы на щечках, катушка обматывается 5 слоями бумаги;
  • намотка на вторичике по направлению должна совпадать с таковым на первичке;
  • зафиксировав на второй каркасной щечке выводы нагрузочных катушки, ее также заматывают в бумагу;
  • пластины помещают на половину в катушку, затем ними огибают каркас (зазор между этими элементами обязательный), чтобы концы сошлись под ней;
  • ТН закрепляют, например, скобами на куске деревянной доски. Последний этап — концы выводятся на основу, оснащаются контактами.

тн

Можно сделать расчет по аналогии как описано и создать ТН одновременно для двенадцати и двадцати четырех вольт, что затребовано при использовании разных светильников. Наматывают 240 витков, но со 120-го выводят контакт в форме петли.

схема

Видео по теме

Источник

Как прозвонить трансформатор или как определить обмотки трансформатора.

16 Фев 2016г | Раздел: Радио для дома

Здравствуйте, уважаемые читатели сайта sesaga.ru. На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки. А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Внешний вид трансформатора

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром.

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Трансформатор типа ТАН

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Первичная и вторичная обмотки трансформатора

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

Выводы обмоток трансформатора

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

Китайский понижающий трансформатор

2. Определение обмоток по сопротивлению.

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 1000…5000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Многообмоточный трансформатор

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Обозначение обмоток трансформатора на схемах

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Первая обмотка трансформатора

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5. Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е. пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Обмотка с отводом посередине

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Выводы третьей обмотки трансформатора

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Сетевая обмотка трансформатора

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Читайте также:  Меня бьет статистическим током почему

Электрическая схема трансформатора

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Последовательное включение лампы в обмотку

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Источник

Первичная обмотка трансформатора включенного в цепь переменного тока с напряжением 220в

§ 83. Рабочий процесс трансформатора

При работе трансформатора под нагрузкой (рис. 104) в первичной и во вторичной его обмотке протекают токи, создающие потоки рассеяния Φs1 и Φs2. Потоки рассеяния сцеплены только с витками той обмотки, током которой они создаются, и всегда много меньше основного магнитного потока Φo, замыкающегося по магнитопроводу трансформатора (по стали), так как потоки рассеяния проходят через немагнитную среду.

Основной магнитный поток Φo, пронизывая витки первичной и вторичной обмоток, индуктирует в них э. д. с., зависящие от числа витков обмотки, амплитуды магнитного потока и частоты его изменения. Действующие значения э. д. с. обмоток:

где Е1 и Е2 — действующие значения э. д. с. первичной и вторичной обмоток;
ω1 и ω2 — числа витков этих обмоток;
f — частота тока;
Φm — амплитуда (наибольшее значение) магнитного потока в сердечнике, вб.
Так как потоки рассеяния и падения напряжения в сопротивлениях обмоток трансформатора очень малы, то приближенно можно считать, что напряжения на зажимах первичной U1 и вторичной U2 обмоток равны э. д. с. этих обмоток, т. е. U1 = E1 и U2 = E2.
При холостом ходе трансформатора оба напряжения практически не отличаются по величине от соответствующих э. д. с. По этой причине отношение напряжений на зажимах первичной и вторичной обмоток трансформатора при холостом ходе (без нагрузки) называется коэффициентом трансформации и обозначается буквой K, т. е.

Таким образом, если в трансформаторе первичная и вторичная обмотки имеют различное число витков, то при включении первичной обмотки в сеть переменного тока с напряжением U1 на зажимах вторичной обмотки возникает напряжение U2, не равное напряжению U1. Если число витков вторичной обмотки меньше числа витков первичной, то в той же мере напряжение на зажимах вторичной обмотки меньше напряжения первичной обмотки и трансформатор является понижающим. Если же число витков вторичной обмотки больше числа витков первичной, то и напряжение вторичной обмотки больше напряжения первичной и трансформатор окажется повышающим.

Пример. Первичная обмотка трансформатора с числом витков ω1 = 660 включена в сеть напряжением U1 = 220 в. Определить напряжение на зажимах вторичной обмотки, если число ее витков ω2 = 36.
Решение .

Напряжение и э. д. с. вторичной обмотки трансформатора зависит от числа витков. Поэтому наиболее простым способом регулирования напряжения трансформатора является изменение числа витков одной из обмоток, чаще обмотки высшего напряжения.
Число витков изменяется обычно в пределах ± 5% от номинального. Для этой цели от одного из концов обмотки делают отводы.
Если вторичную обмотку трансформатора замкнуть на какой-либо приемник электрической энергии, то во вторичной цепи будет протекать ток I2, а в первичной обмотке ток I1 который может быть представлен геометрической суммой тока холостого хода и нагрузочного тока.
Первичная и вторичная обмотки трансформатора электрически не соединены. Однако надо иметь в виду, что за счет магнитной связи между этими обмотками изменение тока во вторичной обмотке I2 будет вызывать соответствующее изменение тока первичной обмотки I1. Если увеличится ток во вторичной обмотке, то увеличится ток и в первичной обмотке. Наоборот, при уменьшении тока во вторичной обмотке уменьшится ток и в первичной обмотке. Если разомкнуть вторичную обмотку, то ток в ней станет равным нулю, а в первичной обмотке уменьшится до малой величины.
Ток I, протекающий по первичной обмотке трансформатора, при разомкнутой вторичной цепи называется током холостого хода, который значительно меньше номинального тока трансформатора.
По первичной и вторичной обмоткам при нагрузке протекают численно неравные токи. Если пренебречь потерями мощности в трансформаторе, то можно записать, что мощность, отдаваемая трансформатором приемнику энергии U2I2, равна мощности, потребляемой им из сети источника энергии U1I1 т. е.

I2 = K I1. (105)

Пренебрегая падением напряжения в сопротивлениях первичной обмотки трансформатора, можно допустить, как это было показано выше, при любой его нагрузке приближенное равенство абсолютных величин приложенного напряжения U1 и уравновешивающей это напряжение э. д. с. первичной обмотки, т. е.

U1 = E1. (106)

На основании этого равенства можно сказать, что при неизменном по величине приложенном напряжении U1 будет приблизительно неизменной э. д. с. E1 индуктируемая в первичной обмотке трансформатора при любой его нагрузке.
А так как э. д. с. E1 зависит от магнитного потока φm, то и магнитный поток в магнитопроводе трансформатора при любом изменении нагрузки будет приблизительно неизменным.
Таким образом, при неизменном приложенном напряжении магнитный поток в сердечнике трансформатора будет практически неизменным при любом изменении нагрузки.
Ток I2, протекающий по вторичной обмотке при нагрузке трансформатора, создает свой магнитный поток, который, согласно закону Ленца, направлен встречно магнитному потоку в сердечнике, стремясь его уменьшить. Чтобы результирующий магнитный поток в сердечнике остался неизменным, встречный магнитный поток вторичной обмотки должен быть уравновешен магнитным потоком первичной обмотки.
Следовательно, при увеличении тока вторичной обмотки I2 возрастает размагничивающий магнитный поток этой обмотки и одновременно повышается как ток первичной обмотки I1 так и магнитный поток, создаваемый этим током. Так как магнитный поток первичной обмотки уравновешивает размагничивающий поток вторичной обмотки, то результирующий магнитный поток в сердечнике поддерживается неизменным.
В понижающем трансформаторе напряжение первичной обмотки U1 больше напряжения вторичной обмотки U2 в K раз, следовательно, и сила тока вторичной обмотки I2 больше силы тока первичной обмотки I1 также в К раз. В повышающем трансформаторе имеет место обратное соотношение между напряжениями его обмоток и между силами токов в них. Если, например, включить на полную нагрузку трансформатор, напряжения первичной и вторичной обмоток которого равны U1 = 220 в, U2 = 24 в, то при номинальной силе тока первичной обмотки = 0,3 а сила тока во вторичной обмотке

Если напряжения первичной и вторичной обмоток соответственно равны U1 = 127 в, U2 = 510 в, то при силе тока во вторичной обмотке I2 = 0,2 а в первичной обмотке сила тока будет примерно равна:

Таким образом, обмотка с более высоким напряжением имеет большее число витков и выполнена из провода с меньшим поперечным сечением, чем обмотка с более низким напряжением, так как сила тока в обмотке более высокого напряжения меньше силы тока в обмотке с более низким напряжением.

Источник



§ 3.13. Примеры решения задач

Задачи на материал данной главы имеют электротехническое содержание. Они подробно рассматриваются в курсах электротехники. Мы ограничимся рассмотрением нескольких простых задач, для решения которых необходимо знать формулу (3.2.2), выражающую зависимость между частотой ЭДС, наводимой в генераторе, частотой вращения ротора и числом пар полюсов в нем; формулу (3.3.10) коэффициента трансформации трансформатора и формулу (3.3.15) КПД трансформатора. Надо хорошо разбираться в схемах выпрямления переменного тока. Следует знать способы соединения обмоток в генераторе трехфазного тока, а также способы соединения потребителей энергии при их включении в цепь трехфазного тока. Необходимо усвоить соотношения между линейным и фазным напряжением при соединении обмоток генератора трехфазного тока звездой и треугольником [формулы (3.6.5) и (3.6.6)] и соотношения между линейными и фазными токами при включении потребителей трехфазного тока звездой и треугольником [формулы (3.7.1) и (3.7.4)]; формулу (3.7.6) мощности трехфазного тока. Надо уметь строить векторные диаграммы.

Читайте также:  Электрическая печь потребляет мощность 6000 вт при величине тока 50 а определить напряжение тока

Задача 1

Первичная обмотка трансформатора находится под напряжением U1 = 220 В, сила тока в ней I1 = 0,55 А. Вторичная обмотка питает лампу накаливания. Напряжение на зажимах лампы U2 = 12 В, а сила тока I2 = 3,6 А. Коэффициент полезного действия трансформатора равен η = 0,65. Найдите сдвиг фаз φ1 между колебаниями силы тока и напряжения в первичной обмотке трансформатора.

Решение. Мощность, потребляемая первичной обмоткой трансформатора,

Мощность, отдаваемая трансформатором лампе (полезная мощность), равна:

Коэффициент полезного действия

Здесь cos φ2, так как лампа обладает только активным сопротивлением. Следовательно,

Задача 2

На какие пробивные напряжения должны быть рассчитаны конденсатор С и диод D, если выпрямитель (рис. 3.39) может работать как под нагрузкой, так и без нее?

Решение. В течение полупериода, когда лампа оказывается включенной в прямом направлении, конденсатор заряжается до амплитудного напряжения городской сети, равного 127√2 В = 180 В. Когда диод заперт (не проводит ток), он находится под напряжением сети (с амплитудой 180 В) и напряжением заряженного конденсатора (тоже равного 180 В). Изменение потенциала вдоль цепи в этот момент времени изображено на рисунке 3.40.

Если выпрямитель работает без нагрузки, то конденсатор должен рассчитываться на пробивное напряжение, не меньшее 180 В, а диод — на напряжение, не меньшее 360 В.

Задача 3

Фазное напряжение генератора трехфазного тока Uф = 125 В. Потребитель энергии включен звездой. Все его фазы обладают активными сопротивлениями: RA = RB = 2,5 Ом, RC = 25 Ом. Определите силу тока в нейтральном проводе.

Решение. Согласно закону Ома

Силу тока в нулевом проводе найдем графическим методом.

На рисунке 3.41, а построены векторы фазных напряжений и фазных сил токов (векторы фазных сил токов и векторы соответствуюш;их фазных напряжений совпадают по направлению, так как нагрузка каждой фазы активная).

Складывая векторы сил фазных токов (рис. 3.41, б), получим силу тока в нейтральном проводе IO = 5 А. Сила тока в нулевом проводе отстает по фазе от напряжения UA на угол φ = 60°.

Задача 4

К трехфазной сети трехфазного тока (рис. 3.42) с напряжением Uл = 120 В присоединены потребители энергии, имеющие сопротивления RAB = 10 Ом, RBC = RCA = 20 Ом. Определите, под каким напряжением будут находиться потребители при перегорании предохранителя в проводе В.

Решение. При перегорании предохранителя потребители АВ и ВС окажутся соединенными последовательно и включенными на линейное напряжение Uл = 120 В. Силы токов IAB и IBC равны:

Напряжения на зажимах потребителей:

Задача 5

Двухпроводная линия электропередачи может работать при двух различных напряжениях генератора U1 и U2 и противлениях нагрузки R1 и R2. Отношение потерь мощности на подводящих проводах для этих случаев равно α. Определите отношение напряжений U1/U2 при условии, что мощность, отдаваемая генератором, в обоих случаях одинакова.

Решение. Сопротивление подводящих проводов Rпр в обоих случаях одно и то же. Мощность, теряемая в проводах,

где I — сила тока в цепи. Отношение потерь мощности:

Полная мощность, отдаваемая генератором, равна:

По условию задачи в обоих случаях генератор отдает одну и ту же мощность:

Подставляя выражение для отнопхения сопротивлений (3.13.2) в уравнение (3.13.1) получим:

Следовательно,

Упражнение 3

1. С какой частотой должен вращаться ротор генератора, чтобы частота вырабатываемого переменного тока была 50 Гц, если число пар полюсов равно 3; 4; 6; 10? С какой частотой вращаются роторы генераторов на Волжской ГЭС, если число пар полюсов в этих генераторах равно 44?

2. Чтобы узнать, сколько витков содержат первичная и вторичная обмотки трансформатора, не вскрывая катушек, поверх вторичной обмотки намотали 60 витков провода. После включения первичной обмотки в сеть с напряжением 124 В* при помощи вольтметра обнаружили, что на концах обмотки с 60 витками имеется напряжение 16 В, а на концах вторичной обмотки — напряжение 40 В. Сколько витков содержится в первичной обмотке и сколько во вторичной?

3. Вторичная обмотка трансформатора, имеющая N2 = 100 витков, пронизывается магнитным потоком, изменяющимся со временем по закону Ф = 0,01 cos 314t (в единицах СИ). Определите зависимость ЭДС индукции во вторичной обмотке от времени и найдите действующее значение этой ЭДС.

4. От середины катушки с железным сердечником (обмотка — толстый медный провод с большим числом витков) сделан отвод С (рис. 3.43). Один раз между точками Б и С включен источник постоянного напряжения U1. Другой раз к этим точкам приложено переменное напряжение с амплитудой U1. Найдите напряжение U2 между точками А и В в первом случае и амплитуду переменного напряжения U’ между точками А и В во втором случае.

5. Первичная обмотка понижающего трансформатора с коэффициентом трансформации К = 10 включена в сеть переменного тока с напряжением U1 = 220 В. Сопротивление вторичной обмотки r =1,2 Ом. Сила тока во вторичной цепи I2 = 5 А. Определите сопротивление R нагрузки трансформатора и напряжение U2 на зажимах вторичной обмотки. Потерями в первичной цепи пренебречь.

6. Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис. 3.44).

Для защиты от вихревых токов (токов Фуко) сердечник набирают из тонких железных пластин, изолированных друг от друга слоем лака. Это можно сделать различными способами: 1) набирая сердечник из тонких колец, положенных стопкой одно на другое; 2) свертывая в рулон длинную ленту, имеющую ширину h; 3) собирая сердечник из прямоугольных пластин размером l х h (см. рис. 3.44). Какой способ лучше?

7. Амплитудные значения ЭДС в каждой из обмоток генератора трехфазного тока равны 310 В. Каковы мгновенные значения каждой ЭДС в момент, когда фаза первой ЭДС равна π/б?

8. В генераторе трехфазного тока в каждой фазной обмотке статора индуцируется ЭДС с амплитудным значением, равным 5400 В. Обмотки генератора соединены звездой. Определите действующие значения фазного и линейного напряжений.

9. В паспорте двигателя трехфазного тока в числе прочих сведений написано: «Δ/ 220/380*. Что означает эта запись? Как надо соединить обмотки этого двигателя при включении его в сеть с линейным напряжением 220 В; 380 В? Как будет работать двигатель, если в каждом из этих случаев осуществить (по ошибке) не то соединение?

10. На щитках генераторов, трансформаторов, двигателей трехфазного тока клеммы шести выводных проводов трехфазных обмоток располагаются в порядке, указанном на рисунке 3.45. Буквами А и X, В и У, С и Z обозначены начала и концы соответственно 1, 2 и 3-й фазных обмоток. Какие удобства при переключении с треугольника на звезду и обратно дает такое расположение клемм на щитке? Покажите на рисунках соединения звездой и треугольником.

11. Почему при пуске асинхронного трехфазного электродвигателя иногда его включают в сеть трехфазного тока сначала на звезду, а когда двигатель наберет достаточное число оборотов, его переключают на треугольник? Нарисуйте схему такого переключения.

12. Магнитное поле с индукцией вращается в плоскости чертежа с угловой скоростью ω. В этом поле находится рамка, стороны которой равны а и b. Активное сопротивление рамки R. Нормаль к плоскости рамки вращается в плоскости чертежа с угловой скоростью Ω. (рис. 3.46). Найдите силу тока, индуцированного в рамке.

13. Найдите момент сил, приложенных к рамке (см. задачу 12).

14. В трехфазном трансформаторе число витков на фазу первичной обмотки N1 = 2080, вторичной — N2 = 80. Первичное линейное напряжение U1 = 3300 В. Определите вторичные линейные напряжения, коэффициенты трансформации фазных и линейных напряжений при следующих соединениях обмоток: а) /; б) /Δ; в) Δ/; г) Δ/Δ.

15. По двухпроводной линии от электростанции к потребителю необходимо передать электрическую мощность Р = 66 кВт. Один раз эта мощность была передана при напряжении 2200 В, другой раз — при напряжении 22 000 В. Сопротивление линии R = 4 Ом. Определите, сколько процентов составляет мощность, теряемая в проводах ЛЭП, от переданной мощности в обоих случаях.

16. Найдите мощность, теряемую в проводах, идущих от станции к потребителю, при следующих данных: передаваемая мощность Р = 100 кВт, напряжение на станции U = 220 В, сопротивление проводов R = 0,05 Ом, сдвиг фаз мегкду током и напряжением φ = 30°.

17. При передаче электроэнергии на большое расстояние используется повышающий трансформатор, нагруженный до номинальной мощности Р = 1000 кВт. При этом ежесуточная потеря энергии на линии электропередачи составляет ΔWп = 215 кВт • ч. Во сколько раз необходимо повысить выходное напряжение, чтобы при передаче электроэнергии потери не превышали 0,1%?

18. На первичную обмотку трансформатора подается напряжение 3600 В. Вторичная обмотка питает потребителя мощностью 25 кВт при напряжении 220 В и cos φ = 1. Определите сопротивление подводящих проводов, если коэффициент трансформации равен 15.

19. Какова мощность гидроэлектростанции, если плотина поднимает уровень воды на 100 м и расход воды составляет 540 м^/с 3 КПД станции 94%.

* Здесь и далее даются действующие значения напряжения и силы тока.

Источник