Меню

Питающие напряжения материнских плат

РЕМОНТ МАТЕРИНСКОЙ ПЛАТЫ: ПИТАНИЕ ПРОЦЕССОРА

В последнее время подрабатывал на дому выполнением ремонтов электроники. Ремонтируя как технику знакомых, так и выкупленную на местном форуме (Авито и Юле), с целью реализации. Занимался всем на что хватало опыта и знаний: от бытовой аудио-видео, до компьютерной техники.

Недавно решил перебрать материнские платы, которых скопилось приличное количество, ремонт которых не был выполнен сходу и которые были отложены до лучших времен. Насчитал из них четыре штуки и все с аналогичными поломками — мосфетами с коротким замыканием или иначе говоря, пробитыми транзисторами в цепях питания процессора. Это те самые всем известные квадратики, полевые транзисторы в планарном исполнении SMD, находящиеся обычно на плате слева от процессора.

Мосфеты цепи питания процессора

В связи с тем, что процессор потребляет довольно большое количество энергии, которую рассеивает в виде тепла в окружающее пространство, тем самым нагревая материнскую плату и установленные на ней детали, ему требуется хорошее охлаждение. Для процессоров 2 ядра тепловой пакет обычно составляет 65-89 ватт, для 4 ядерных — 95 ватт и выше.

Дросселя питания процессора

Для того чтобы электролитические конденсаторы установленные по цепям питания процессора и находящиеся рядом с радиатором процессора (кулером) не вздулись от перегрева, необходимо эффективно отводить выделяемое при работе процессора тепло, иначе говоря требуется эффективная система охлаждения. Но вернемся к сути ремонта.

Мосфет транзистор фото

Мосфет транзистор фото

Если система охлаждения не справляется, то помимо конденсаторов греются еще и установленные на плате мосфеты, транзисторы многофазной системы питания процессора. Количество фаз питания составляет от трех на бюджетных материнских платах, до 4-5 и более в более дорогих, топовых игровых материнках.

Что происходит, когда один из этих квадратиков, полевых транзисторов мосфетов, оказывается пробит? Многие пользователи ПК встречались наверное с подобной поломкой: нажимаешь кнопку включения на корпусе системного блока, кулера дергаются, пытаются начать вращаться и останавливаются, а при повторной попытке включить все повторяется снова.

Провод 4 пин питания процессора

Что это означает? Что в цепях питания процессора где-то короткое замыкание, а скорее всего пробит один из этих самых мосфетов. Как самым простым способом попробовать определить один из вариантов, ваш ли это случай, доступным даже школьнику практически не умеющему обращаться с мультиметром?

Распиновка разъема 4 пин

Если при установленном процессоре отключить на материнской плате разъем дополнительного питания процессора 4 pin и посмотрев по цветам где у нас находится желтый провод +12 вольт, и черный, земля, или GND, и установив на мультиметре режим звуковой прозвонки прозвонить на данном разъеме материнской платы между желтым и черным проводами у нас зазвучит звуковой сигнал, это означает что пробит один или несколько мосфетов.

Монтаж транзистора на материнке

Но как определить какой из мосфетов, какой фазы питания у нас пробит, ведь мосфеты всех фаз питания процессора будут звониться как будто они все находятся в коротком замыкании — посмотрите схему, ведь они стоят параллельно и будут звониться при пробитии через низкоомные дроссели питания? В данном случае, проще всего выпаять одну ножку дросселя или если дроссель в корпусе, да и мне лично было бы так намного удобнее, дроссель целиком.

Процессор, проводя измерения с помощью мультиметра на мосфетах нужно вынимать, так как он имеет низкое сопротивление, которое может ввести в заблуждение при измерениях. Так вот, выпаяв из схемы дроссель мы исключаем то самое влияющее всегда на правильность результатов измерений сопротивление всех, параллельно включенных радиодеталей. Сопротивление, как известно, всегда считается при параллельном соединении, по правилу “меньше меньшего”.

Схема питания процессора

Иначе говоря, общее сопротивление всех подключенных параллельно радиодеталей будет меньше, чем сопротивление детали имеющей самое меньшее сопротивление, стоящей в нашей цепи при параллельном соединении.

Полевой транзистор — изображение на схеме

Так вот, как мы видим по схеме, если у нас один из мосфетов пробит — он будет своим низкоомным сопротивлением, шунтировать и все остальные фазы питания. А выпаяв все дросселя мы тем самым разъединяем все параллельные цепочки на отдельные цепи, при которых остальные фазы перестают влиять на результаты измерений в проверяемой цепи.

Итак, виновник КЗ (короткого замыкания) цепи питания найден, теперь нужно его устранить. Как это сделать, ведь паяльный фен есть в домашней мастерской не у всех начинающих радиолюбителей? Для начала нам потребуется демонтировать, выпаять с платы установленные обычно вплотную электролитические конденсаторы которые будут мешаться нам при демонтаже и к тому очень не любят перегрева.

Паяльник ЭПСН 40 ватт фото

После чего у них обычно резко сокращается срок службы. Сам демонтаж конденсаторов, если учитывать некоторые нюансы, легко выполняется при помощи любого паяльника мощностью 40-65 ватт. Желательно имеющего обработанное, заточенное в конус жало. Сам я имею паяльную станцию Lukey и паяльный фен, но пользуюсь для демонтажа конденсаторов обычным паяльником 40 ватт ЭПСН с жалом заточенным в острый конус.

Паяльный фен фото

Правда тут есть один нюанс — для удобства работы применяю покупной диммер на шнуре, который выпускается для ламп накаливания но отлично подходит и для регулирования мощности паяльника. Осталось лишь подцепить к нему розетку для удлинителя, идущую с креплением на шнур и походный диммер готов.

Диммер на шнур 220В

Стоимость данного диммера была довольно скромной, всего порядка 130 рублей, также подобные диммеры видел и на Али экспресс — это для тех, кто не имеет доступа к радиомагазинам с хорошим выбором радиотоваров. Но вернемся к демонтажу сначала конденсаторов, а затем и мосфетов.

ПОС 61 припой с канифолью

Если с конденсаторами эта процедура не имеет никаких сложностей, за исключением одной фишки применяемой для того, чтобы снизить общую температура плавления бессвинцового припоя, имеющего, как известно, более высокую температуру плавления чем припой применяющийся для пайки электроники ПОС-61.

Так вот, мы берем трубчатый припой с флюсом ПОС-61, желательно диаметром не более 1-2 миллиметров, подносим его к контакту конденсатора с обратной стороны платы и прогревая, расплавив его, осаждаем припой на каждом из двух контактов конденсатора. С какой целью, мы производим эти действия?

  1. Цель первая: путем диффузии сплавов смешения бессвинцового припоя и ПОС-61, мы понижаем общую темперауру плавления образовавшегося сплава.
  2. Цель вторая: чтобы максимально эффективно передать тепло от жала паяльника к контакту, мы условно говоря, греем контакт небольшой капелькой припоя, передавая тепло при этом намного эффективнее.
  3. И наконец, цель третья: когда нам требуется очистить после демонтажа конденсатора отверстие в материнской плате для последующего монтажа, не важно при замене конденсатора или монтаже обратно, как в этом случае этого же конденсатора, мы облегчаем этот процесс проткнув отверстие в расплавленном припое предварительно снизив общую температуру сплава внутри нашего контакта.
Читайте также:  Измерительный трансформатор напряжения релейная защита

Здесь нужно сделать еще одно отступление: для этой цели многие радиолюбители применяют различные подручные средства, кто-то деревянную зубочистку, кто-то заостренную спичку, кто-то иные предметы.

Алюминиевый конический пруток

Мне в этом отношении повезло больше — остался с советских времен от одной из монтажниц конический алюминиевый пруток, который значительно облегчает выполнение данной работы.

С его помощью нам достаточно прогревая контакт вставить пруток поглубже в отверстие контакта. Причем данное действие следует проводить без фанатизма, всегда помня о том, что материнская плата это многослойная плата, а контакты внутри имеют металлизацию, иначе говоря металлическую фольгу, сорвав которую если вы недостаточно прогрели контакт или резко вставили предмет которым прочищали отверстие в контакте, вы можете привести материнскую плату или любое другое устройство имеющее подобную сложную конструкцию печатной платы в устройство, уже не подлежащее ремонту.

Итак, все трудности преодолены, конденсаторы успешно демонтированы, переходим наконец к замене наших мосфетов, то есть цели нашей статьи. Собственно любая процедура замены детали подразумевает собой три этапа: сначала демонтаж, затем подготовка платы к последующему монтажу, и наконец сам монтаж новой детали или ранее демонтированной с донорской платы этим или другим способом.

Если у вас есть паяльный фен — здесь все просто, устанавливаем температуру, рекомендуемую в Даташите для демонтажа нашей детали, которую она легко перенесет и не придет при этом в негодность, наносим флюс и выпаиваем деталь. Монтаж при наличии фена возможен также с его помощью нанеся предварительно флюс. Также возможен монтаж и с помощью паяльника, либо от паяльной станции, либо при отсутствии ее при помощи паяльника 25 ватт ЭПСН с остро заточенным жалом, я пользуюсь обычно паяльником для монтажа.

Ни в коем случае нельзя использовать паяльники с мощностью 40-65 ватт, особенно дедушкины в виде топора для монтажа мосфетов на плату (по крайней мере при отсутствии диммера с помощью которого мы сможем понизить температуру жала паяльника). В начале статьи было упоминание о варианте демонтажа мосфетов для начинающих не имеющих в мастерской паяльного фена, сейчас разберем этот вариант подробнее.

Сплав Вуда фото

Есть такое замечательное изобретение — сплавы Розе и Вуда, особенно это касается сплава Вуда имеющего более низкую температуру плавления, чем сплав Розе. Эти сплавы имеют очень низкую температуру плавления, порядка 100 градусов, плюс – минус уточнять не буду, не суть так важно. Так вот, откусив бокорезами небольшую капельку любого из этих сплавов и разумеется нанеся флюс, мы кладем данную капельку на контакты нашего мосфета и прогревая жалом паяльника осаждаем его на контактах.

Причем со стороны Стока, среднего контакта имеющего большую площадь соприкосновения с платой, мы наносим значительно больше данного сплава. Цель данной операции? Также как и в случае с нанесением сплава ПОС-61, мы снижаем, причем на этот раз значительно существеннее, общую температуру плавления припоя, облегчая тем самым условия демонтажа.

Демонтаж микросхем без фена

Данная операция требует аккуратности от исполнителя для того чтобы при демонтаже не оторвать пятаки контактов с платы, поэтому если чувствуем что прогрели недостаточно, а греть требуется попеременно быстро меняя жало паяльника у этих трех контактов, немного покачивая пинцетом деталь, разумеется без фанатизма. Произведя данную операцию 3-5 раз уже будешь машинально чувствовать когда контакты детали достаточно прогреты, а когда еще нет.

Демонтаж с помощью оплетки

У данного способа демонтажа есть один минус, но при наличии опыта это не становится проблемой: перегрев при демонтаже мосфетов с плат доноров. В случае если же вы приобрели новый мосфет в радиомагазине и уверены в том, что демонтируете пробитый мосфет, перегрев становится не очень критичен. После демонтажа следует обязательно убедиться в том, пропало ли замыкание на контактах мосфета на плате, редко но к сожалению иногда случается и так, что наш якобы пробитый мосфет был ни при чем, а влияли драйвер или ШИМ контроллер на результаты измерений, которые и пришли в негодность. В данном случае без помощи паяльного фена будет не обойтись.

Корпус SO-8 микросхема

Лично демонтировал много раз данным способом микросхемы в корпусе SO-8, применяя на контактах с полигонами иногда паяльник мощностью 65 ватт и немного убавив его мощность диммером. Результат при аккуратности исполнителя практически 100% успешный. Для микросхем в SMD исполнении, имеющим большее количество ног, данный способ к сожалению бесполезен, потому что прогреть большее количество ножек без специальных насадок проблематично и очень высока вероятность оторвать пятаки контактов на плате.

Имел такую возможность, один раз был срочный ремонт ЖК телевизора в небольшой мастерской не имеющей паяльного оборудования, микросхема в корпусе SO-14 была демонтирована, но к сожалению вместе с двумя пятаками контактов. Проблемой это не стало — недостающие связи были брошены проводом МГТФ от ближайших контактов имеющих соединение дорожками с оторванными контактами. Телевизор был возвращен к жизни, жалоб от клиента не было.

При подобном способе демонтажа на плате всегда остаются “сопли” — бугорки припоя, которые легко убираются с платы сначала с помощью оловоотсоса, затем следует пройтись демонтажной оплеткой по контактам, смоченной во флюсе. Я всегда использую при монтаже и демонтаже самостоятельно приготовленный насыщенный спирто-канифольный флюс, получаемый путем растворения в 97 % аптечном спирте-денатурате Асептолин, мелко растолченной в порошок канифоли.

Затем нужно дать раствору – флюсу настояться двое-трое суток до растворении канифоли в спирте, периодически многократно взбалтывая, не давая выпасть в осадок. Данный флюс наношу с помощью кисточки от лака для ногтей, соответственно налив получившийся флюс в очищенную от следов лака 646 растворителем бутылочку. Грязи на плате остается при использовании этого флюса в разы меньше, чем от всяких китайских флюсов, типа BAKU или RMA-223.

Делаем спиртоканифольный флюс

Ту же, которая все-таки останется, мы убираем с платы с помощью 646 растворителя и обычной кисточки для уроков труда. Данный способ по сравнению с удалением следов флюса даже с помощью 97% спирта имеет ряд преимуществ: быстро сохнет, лучше растворяет и оставляет меньше грязи. Рекомендую всем как отличное бюджетное решение.

Читайте также:  Как понизить напряжение сигнала

646 растворитель фото

Единственное замечу: будьте аккуратнее с пластмассовыми деталями, не наносите на графитовые контакты, типа как встречаются на платах пультов и потенциметров, и никогда не торопитесь, дайте хорошенько просохнуть плате, особенно если есть риск затекания растворителя под стоящие рядом SMD и тем более BGA микросхемы.

Графитовые контакты платы пульта

Таким образом процесс монтажа-демонтажа мосфетов на материнских платах не является чем-то сверх трудным, при наличии более-менее прямых рук и доступен для выполнения любому радиолюбителю, имеющему небольшой опыт ремонтов. Всем удачных ремонтов — AKV.

Источник



Что такое VRM материнской платы

VRM (Voltage Regulator Module) является неотъемлемым и одним из важнейших элементов материнской платы, который отвечает за питание центрального процессора. Высокочастотные чипы, такие как ЦПУ компьютера, очень чувствительны к качеству питания. Малейшие неполадки с напряжением или пульсациями могут повлиять на стабильность работы всего компьютера. VRM представляет собой не что иное, как импульсный преобразователь, который понижает 12 вольт, идущие от блока питания, до необходимого процессору уровня. Именно от VRM зависит подаваемое на ядра напряжение.

Принцип работы VRM был описан в более ранней статье, а сейчас мы рассмотрим, из чего состоит подсистема питания процессора.

VRM состоит из пяти основных составляющих: MOSFET-транзисторы, дроссели, конденсаторы, драйверы и контроллер.

Транзисторы

«MOSFET» является аббревиатурой, которая расшифровывается как «Metal Oxide Semiconductor Field Effect Transistor». Так что MOSFET — это полевой МОП-транзистор с изолированным затвором.

Дроссели

Дроссели — это катушки индуктивности, которые стабилизируют напряжение. Вместе с конденсаторами они образуют LC-фильтр, позволяющий избавиться от скачков напряжения и уменьшить пульсации. В современных материнских платах дроссели выглядят как темные кубики, находящиеся около МОП-транзисторов.

Конденсаторы

В современных платах твердотельные полимерные конденсаторы уже давно вытеснили электролитические. Это связано с тем, что полимерные конденсаторы имеют намного больший срок эксплуатации. Конденсаторы помогают стабилизировать напряжение и уменьшать пульсации.

Контроллер

Контроллер — чип, рассчитывающий, с каким сдвигом по времени будет работать та или иная фаза. Является «мозгом» всей VRM.

Драйвер

Драйвер — это чип, исполняющий команды контроллера по открытию или закрытию полевого транзистора.

Охлаждение — зачем оно нужно

Существует прямая связь между энергопотреблением процессора и нагревом VRM. Чем больше потребляет процессор, тем больше нагрузка на цепи питания, и, следовательно, больше их нагрев. MOSFET-транзисторы во время работы выделяют значительное количество тепла. Поэтому на них устанавливают пассивное охлаждение в виде радиатора, чтобы избежать перегрева и нестабильной работы. Производители материнских плат начального уровня часто экономят на этом, оставляя цепи питания без охлаждения, что, конечно, не очень хорошо, но не слишком критично, поскольку на подобные материнские платы обычно не ставят топовые процессоры с высоким TDP.

На транзисторы цепей питания можно не ставить охлаждение при условии, что температура во время нагрузки не будет превышать допустимых значений. Поэтому без охлаждения VRM очень нежелательно устанавливать «прожорливые» процессоры. На материнских платах, рассчитанных под оверклокинг, обязательно имеется охлаждение.

В самых топовых платах, помимо обычного радиатора, можно встретить испарительную камеру или водоблок для подключения к контуру СЖО.

Количество фаз

У неопытных пользователей именно эта характеристика зачастую становится ключевой при выборе материнской платы. Производители знают об этом и часто прибегают к различным уловкам. Чаще всего можно встретить использование двойного набора компонентов для одной фазы, что создает видимость большего количества фаз. Количество и характеристики фаз обычно не указываются производителями в расчете на то, что неопытный покупатель увидит много дросселей и купит плату, решив, что «больше — лучше».

Чтобы узнать реальное количество фаз и используемые компоненты, нужно посмотреть характеристики установленного на материнскую плату ШИМ-контроллера в технической спецификации. Количество дросселей далеко не всегда говорит о реальном количестве фаз. Кроме того, стоит учитывать, что некоторые драйверы способны работать в качестве удвоителя фазы. Это позволяет увеличить количество фактических фаз без использования более продвинутого ШИМ-контроллера.

Конфигурация фаз питания

В описаниях материнских плат часто можно увидеть такие обозначения, как 8+2, 4+1, и т. п. Эти цифры означают количество фаз, отведенных на питание ЦПУ и остальных элементов. Например, 8+2 означает, что 8 фаз отведено на питание ядер процессора, а оставшиеся 2 рассчитаны на контроллер памяти.

От количества фаз зависит уровень пульсаций, действующих на процессор. Чем больше фаз, тем меньше пульсаций тока. Большее количество фаз означает большее количество MOSFET-транзисторов в цепи, что положительно сказывается на температурных показателях. Кроме того, чем больше транзисторов, тем легче будет поставить высокое напряжение на ядра, что позитивно скажется на оверклокинге. В большом количестве фаз, по большому счету, имеются только плюсы. Главным и единственным недостатком, пожалуй, является лишь высокая цена.

Источник

Описание напряжений на материнских платах — Процессоры Intel. Обзор и пояснение значений всех напряжений на материнских платах

В настоящее даже базовые материнские платы предоставляют несколько производных величин помимо основного напряжения, а в моделях класса high-end этих значений несметное количество. Порой даже опытным специалистам трудно понять значение того или иного параметра. В данной статье мы постараемся объяснить все эти значения напряжений на доступном всем языке.

Первыми путаницу в данном вопросе вносят производители материнских плат. Притом, что производители CPU и наборов микросхем дают официальные названия всех напряжений, каждый производитель материнских плат, по непонятным причинам, присваивает им свои названия. И что самое интересное, в мануалах к платам производитель обычно не объясняет значение того или иного параметра. Зачастую объяснение в руководстве к материнской плате ограничивается простым повторением, что эта величина позволяет менять эту «величину». Чтобы лучше понять информацию о различных напряжениях материнской платы, сначала рассмотрим, какие названия напряжений производители CPU дают своим продуктам.

Процессоры Intel

Процессоры производства Intel используют следующие напряжения (приводятся официальные названия):

VCC. Основное напряжение CPU, которое неофициально может называться, как Vcore. Обычно, когда говорят “напряжение центрального процессора”, то имеют в виду данную величину. Опция, которая управляет данным напряжением на материнских платах, может называться “CPU Voltage”, “CPU Core”, и т.д.

VTT. Напряжение, подаваемое на интегрированный контроллер памяти (для CPU, где есть этот компонент), на шину QPI (также, если таковая имеется в процессоре), на шину FSB (для CPU на данной архитектуре), на кэш памяти L3 (если присутствует), на шину контроля температуры (PECI, Platform Environmental Control Interface, если данная особенность присутствует в CPU), а также на другие схемы, в зависимости от модели и семейства CPU. Важно понять, что на процессорах AMD “VTT” обозначается другое напряжение, а VTT на процессорах Intel — это эквивалент VDDNB на процессорах AMD. Данное напряжение изменяться посредством опций “CPU VTT”, “CPU FSB”, “IMC Voltage” и “QPI/VTT Voltage”.

Читайте также:  Ср 723 реле напряжения этм

VCCPLL. Напряжение, используемое в CPU, для синхронизации внутренних множителей (PLL, Фазовая автоматическая подстройка частоты). Это напряжение может быть изменено с помощью “CPU PLL Voltage”.

VAXG. Напряжение, подаваемое на видеоконтроллер, интегрированный в CPU. Доступно на Pentium G6950, Core i3 5xxx и Core i5 6xx процессоры. Эта опция может называться “Graphics Core”, “GFX Voltage”, “IGP Voltage”, “IGD Voltage” и “VAXG Voltage”.

CPUclockvoltage. Некоторые материнские платы позволяют Вам менять напряжение базовой частоты CPU. Это можно делать через опции, называемые “CPU Clock Driving Control” or “CPU Amplitude Control”.

Процессоры Intel. Напряжения, относящиеся к памяти.

В то время, как у всех процессоров производства AMD есть встроенный контроллер памяти, то у процессоров Intel, эта особенность присутствует только у более новых моделей (Core i3, Core i5 и Core i7). Поэтому установка напряжений, относящихся к памяти, может быть произведена через настройки CPU или северного моста в составе набора микросхем (MCH, Memory Controller Hub), в зависимости от Вашей платформы. По этой причине напряжения и были разнесены на две группы.

На шине памяти может присутствовать три различных вида напряжений:

VDDQ. Сигнальное напряжение на шине памяти. JEDEC (организация, стандартизирующая память) называет эту величину напряжением SSTL (Stub Series Termination Logic). Это распространенная величина напряжения памяти, и она может скрываться за следующими названиями: “DIMM Voltage”, “DIMM Voltage Control”, “DRAM Voltage”, “DRAM Bus Voltage”, “Memory Over-Voltage”, “VDIMM Select”, “Memory Voltage” и т.д. Значение по умолчанию для этой линии 1.8 в для памяти DDR2 (SSTL_1.8) или 1.5 в для DDR3 (SSTL_1.5).

Terminationvoltage. Напряжение, подаваемое на логические схемы в чипах памяти. По умолчанию данное напряжение устанавливается, как половина значения напряжения VDDQ/SSTL (основное напряжение на памяти). Эта опция может быть обозначена как “Termination Voltage” or “DRAM Termination”. Обратите внимание, что для процессоров AMD это напряжение называется VTT, а в случае с процессорами Intel, VTT — это вторичное напряжение процессора (см. предыдущую страницу).

Referencevoltage. Референсное напряжение, которое определяет уровень напряжения на контроллере памяти и модулях памяти. При определенном значении Reference voltage напряжения на шине памяти ниже определяются как “0”, а выше этого значения, как “1”. По умолчанию значение Reference voltage составляет половину напряжения SSTL (коэффициент 0.500x), но некоторые материнские платы позволяют Вам изменять это отношение, обычно посредством опций “DDR_VREF_CA_A”, “DRAM Ctrl Ref Voltage” и т.п. “CA”, “Ctrl” and “Address” относятся к линиям управления шины памяти (официальное название JEDEC для этого напряжения — VREFCA). “DA” and “Data” относятся к линиям данных шины памяти (официальное название JEDEC для этого напряжения — VREFDQ). Эти опции настраиваются при помощи установки коэффициента. Например, значение “0.395x” означает, что референсное напряжение будет равно 0.395 от величины напряжения SSTL. Обычно, материнские платы на платформе Intel, позволяют Вам управлять этими напряжениями раздельно для каждого канала памяти. Таким образом, опция “DDR_VREF_CA_A” определяет референсное напряжение для канала A, а “DDR_VREF_CA_B” тоже самое для канала B.

Процессоры Intel. Напряжения, относящиеся к набору микросхем.

Опции, связанные с набором микросхем, включают все напряжения, которые не были описаны на предыдущем абзаце:

Northbridgevoltage. Это напряжение, которое подается на северный мост в составе набора микросхем системной платы. Отметим, что Intel называют северный мост, как MCH (Memory Controller Hub, на материнских платах для процессоров без интегрированного контроллера памяти), IOH (I/O Hub, на материнских платах, под CPU со встроенным контроллером памяти. Реализация набора микросхем в двух чипах) или PCH (Platform Controller Hub, на материнских платах, где CPU также имеет интегрированный контроллер памяти, но набор микросхем реализован в виде одного чипа). Таким образом, название данной опции может немного изменяться в зависимости от платформы. В случае наборов микросхем PCH существует два отдельных напряжения, VccVcore (обычно обозначается в настройках материнской платы как “PCH 1.05 V” или “PCH PLL Voltage” и является основным напряжением чипа), а также напряжение VccVRM (такие опции, как “PCH 1.8 V” или “PCH PLL Voltage” регулируют напряжение, подаваемое на внутренние множители чипа).

Southbridgevoltage. Напряжение, подаваемое на чип южного моста. Intel называют чип южный моста — ICH (I/O Controller Hub). Название опции, отвечающей за установку данного напряжения, может быть “SB Voltage” and “ICH Voltage”.

PCIExpressvoltage. Если Вы хотите изменить напряжение PCI Express, то нужно будет сначала определить, каким образом в Вашей системе управляются слоты и линии PCI Express. Например, некоторые CPU от Intel, могут управлять одной x16 или двумя x8 PCI Express линиями для подключения для видеокарт, а низкоскоростными PCI Express управляет набор микросхем (PCH). На некоторых других платформах управление слотами PCI Express для видеокарт осуществляется северным мостом (MCH или IOH), в то время как низкоскоростными PCI Express, управляет чип южного моста (ICH). Напряжение, используемое на линиях PCI Express, обычно, регулируется аппаратно, поэтому оно автоматически изменяется при изменении напряжений CPU, северного (PCH/MCH) или южное моста, в зависимости от того, где реализовано управление линиями PCI Express. В некоторых наборах микросхем (например, Intel X58) есть возможность устанавливать напряжения для линий PCI Express. На материнских платах, основанных на таких чипсетах, Вы найдете специальные опции для установки напряжения PCI Express. Например, “IOHPCIE Voltage” изменяет напряжение линий PCI Express, которым управляет северный мост материнской платы (IOH). А при помощи такой опции, как “ICHPCIE Voltage” можно устанавливать напряжение линий ICHPCIE Voltage, которыми управляет южный мост материнской платы (ICH).

PCIExpressclockvoltage. Некоторые материнские платы позволяют Вам устанавливать напряжение элементов, отвечающих за частоту шины PCI Express. Данный параметр может называться “PCI-E Clock Driving Control” или “PCI Express Amplitude Control”.

Источник