Меню

Плотность тока обозначается буквой

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Что такое плотность тока

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник

Плотность тока какая буква

Сила и плотность тока. Линии тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S .

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:

I = d q + d t + d q — d t .

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе С И роль основной единицы измерения силы тока играет Ампер ( А ) .

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем d V случайной формы. С помощью следующего обозначения » open=» υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n 0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку d S , которая расположена ортогонально скорости » open=» υ (рис. 1 ).

Читайте также:  Течение переменного тока в конденсаторе

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Проиллюстрируем на поверхности площадки d S очень короткий прямой цилиндр, имеющий высоту » open=» υ d t . Весь массив частиц, которые располагались внутри такого цилиндра за время d t пересекут плоскость d S и перенесут через нее, в направлении скорости » open=» υ , заряд, выражающийся в виде следующего выражения:

d q = n 0 q e » open=» υ d S d t ,

где q e = 1 , 6 · 10 — 19 К л является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на d S d t и получим:

где j представляет собой модуль плотности электрического тока.

j = n 0 q e » open=» υ ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j = ∑ n i q i » open=» υ i i ,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1 . Пускай n → представляет собой единичный перпендикуляр к плоскости d S . В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

d q d t = j → n → d S = j n d S .

Формула приведенная выше справедлива также в том случае, когда плоскость площадки d S неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j → , направленная под прямым углом к нормали, через сечение d S электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j = n 0 q e » open=» υ в таком виде:

j → = — n 0 q e » open=» υ → .

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника ( S 1 , S 2 ) с постоянным током справедливо следующее равенство:

j 1 j 2 = S 2 S 1 .

Основываясь на законе Ома для плотности токов можно записать такое выражение:

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока A м 2 .

Величина и плотность тока

Дата публикации: 26 марта 2013 .
Категория: Статьи.

Величина тока

Из курса физики известно, что электрический ток есть упорядоченное движение электрических зарядов (Q).

Если через поперечное сечение проводника проходит некоторое количество электрических зарядов (количество электричества) Q за время t секунд, то количество электрических зарядов, прошедшее через поперечное сечение проводника в течение одной секунды, называется величиной тока и обозначается буквой I.

Единицей величины тока является 1 ампер, определяемый как количество зарядов в 1 кулон, прошедших через поперечное сечение проводника в 1 секунду, то есть

Рисунок 1. Внешний вид амперметра

Ток в цепи измеряется электрическим прибором – амперметром, внешний вид которого представлен на рисунке 1.

Тысячные доли ампера – миллиамперы измеряются миллиамперметром. Если количество зарядов, проходящих (протекающих) по проводнику, будет меняться, то величина тока также будет меняться.
В этом случае среднее значение тока за данный промежуток времени определяется по формуле:

где ΔQ – изменение количества зарядов; Δt – изменение времени.

Чем меньше промежуток времени Δt, тем меньше среднее значение тока будет отличаться от истинного мгновенного значения тока в данный момент.

Ток, не изменяющийся по величине и по направлению, называется постоянным током.
Постоянный ток дают нам гальванические элементы, аккумуляторы, генераторы постоянного тока, если условия работы электрической цепи не меняются.

Видео 1. Сила электрического тока

Плотность тока

Отношение величины тока I к площади поперечного сечения проводника S называется плотностью тока и обозначается буквой j, ранее плотность тока обозначалась греческой буквой δ (дельта).

так как обычно площадь сечения проводника дается в квадратных миллиметрах, то плотность тока измеряется в а/мм².

Видео 2. Плотность тока

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Плотность тока

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

j = |\vec j| = \frac ,» width=»» height=»» data-lazy-src=

 \vec j = n q \vec v

 \vec j = \rho \vec v,

где \rho— плотность заряда этих носителей. (Направление вектора  \vec j соответствует направлению вектора скорости  \vec v , с которой движутся заряды, создающие ток, если q положително).

\vec v

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

\vec j = \sum_i n_i q_i \vec v_i,

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где n_i\,\!— концентрация частиц каждого типа, q_i\,\!— заряд частицы данного типа, \vec v_i— вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

\vec j = \sum_i q_i \vec v_i

(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).

Содержание

Плотность тока и мощность

Работа, совершаемая электрическим полем над носителями тока, характеризуется, очевидно [2] , плотностью мощности [энергия/(время• объем)]:

Читайте также:  Принципиальная схема включение реле тока

w = \vec E \cdot \vec j,

Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть ее может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) итд.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

\vec j = \sigma\vec E

где \sigma\ — удельная проводимость среды, \vec E— напряжённость электрического поля. Или:

\vec j = \frac \vec E,» width=»» height=»» data-lazy-src=

где — удельное сопротивление.

\sigma

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность в этом случае вообще говоря должна рассматриваться как тензор, а умножение на нее — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности ее мощности)

w = \vec E \cdot \vec j,

вместе с законом Ома принимает для изотропной электропроводности вид:

w = \sigma E^2 = \frac \equiv \rho j^2,» width=»» height=»» data-lazy-src=

w = \vec E \sigma \vec E = \vec j \rho \vec j,

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор \sigmaи тензор \rhoпорождают соответствующие квадратичные формы.

4-вектор плотности тока

В теории относительности вводится четырёхвектор плотности тока (4-ток), составленный из объёмной плотности заряда ρ и 3-вектора плотности тока \vec</p data-lazy-src=

Плотность тока

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

j = |\vec j| = \frac<I data-lazy-src=

 \vec j = n q \vec v

 \vec j = \rho \vec v,

где \rho— плотность заряда этих носителей. (Направление вектора  \vec j соответствует направлению вектора скорости  \vec v , с которой движутся заряды, создающие ток, если q положително).

\vec v

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

\vec j = \sum_i n_i q_i \vec v_i,

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где n_i\,\!— концентрация частиц каждого типа, q_i\,\!— заряд частицы данного типа, \vec v_i— вектор средней скорости частиц этого типа.

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

\vec j = \sum_i q_i \vec v_i

(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).

Содержание

Плотность тока и мощность

Работа, совершаемая электрическим полем над носителями тока, характеризуется, очевидно [2] , плотностью мощности [энергия/(время• объем)]:

w = \vec E \cdot \vec j,

Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть ее может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) итд.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

\vec j = \sigma\vec E

где \sigma\ — удельная проводимость среды, \vec E— напряжённость электрического поля. Или:

\vec j = \frac<1 data-lazy-src=

где — удельное сопротивление.

\sigma

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность в этом случае вообще говоря должна рассматриваться как тензор, а умножение на нее — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности ее мощности)

w = \vec E \cdot \vec j,

вместе с законом Ома принимает для изотропной электропроводности вид:

w = \sigma E^2 = \frac<j^2 data-lazy-src=

w = \vec E \sigma \vec E = \vec j \rho \vec j,

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор \sigmaи тензор \rhoпорождают соответствующие квадратичные формы.

4-вектор плотности тока

В теории относительности вводится четырёхвектор плотности тока (4-ток), составленный из объёмной плотности заряда ρ и 3-вектора плотности тока \vec<j data-lazy-src=