Меню

По двум тонким прямым проводникам параллельным друг другу текут постоянные электрические токи

По двум тонким прямым проводникам параллельным друг другу текут постоянные электрические токи

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 14. По трем тонким длинным прямым параллельным проводникам текут одинаковые токи I. Как направлена сила Ампера, действующая на проводник 1 со стороны двух других (см. рис.)? Расстояния между соседними проводниками одинаковы.

Известно, что если по параллельным проводникам течет ток в одном направлении, то они притягиваются друг к другу. Притяжение вызывает сила Ампера, и, следовательно, при притяжении она должна быть направлена вниз для проводника 1.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
  • Вариант 5
  • Вариант 5. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9
  • Вариант 9. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 10
  • Вариант 10. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал
Читайте также:  Ток потребления теплового извещателя

Источник

По двум тонким прямым проводникам параллельным друг другу текут постоянные электрические токи

2018-05-14 comment
По двум длинным тонким параллельным проводникам, вид которых показан на рис., текут постоянные токи $I_<1>$ и $I_<2>$. Расстояние между проводниками $a$, ширина правого проводника $b$. Имея в виду, что оба проводника лежат в одной плоскости, найти силу магнитного взаимодействия между ними в расчете на единицу их длины.


Мы знаем, что сила Ампера на единицу длины на элементе провода в магнитном поле дается выражением.

$d \vec_ = i ( \hat \times \hat )$, (1)

где $\hat$ — единичный вектор вдоль направления тока.

Теперь возьмем элемент проводника $i_<2>$, как показано на рисунке. Этот элемент находится в магнитном поле, создаваемом током $i_<1>$, который направлен перпендикулярно плоскости рисунка, и его величина определяется,

$d \vec_ = \frac > dr ( \hat \times \vec)$, (поскольку ток через элемент равен $\frac > dr$)

Итак, $d \vec_ = \frac < \mu_<0>> <2 \pi>\fracI_ <2>> \frac $, направлено влево (так как $\hat \perp \vec$).

Следовательно, магнитная сила на проводнике:

Тогда согласно третьему закону Ньютона величина искомой силы магнитного взаимодействия

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/12.8

§12. Постоянное магнитное поле

12.8 Взаимодействие параллельных токов — закон Ампера.

Теперь без труда можно получить формулу для вычисления силы взаимодействия двух параллельных токов.

Img Slob-10-12-039.jpg

Итак, по двум длинным прямым параллельным проводникам, находящимся на расстоянии R друг от друга (которое во много, раз в 15 меньше длин проводников), протекают постоянные токи I1, I2.

В соответствии с полевой теорией взаимодействие проводников объясняется следующим образом: электрический ток в первом проводнике создает магнитное поле, которое взаимодействует с электрическим током во втором проводнике. Чтобы объяснить возникновение силы, действующей на первый проводник, необходимо проводники «поменять ролями»: второй создает поле, которое действует на первый. Повращайте мысленно правый винт, покрутите левой рукой (или воспользуйтесь векторным произведением) и убедитесь, что при токах текущих в одном направлении, проводники притягиваются, а при токах, текущих в противоположных направлениях, проводники отталкиваются [1] .

Таким образом, сила, действующая на участок длиной Δl второго проводника, есть сила Ампера, она равна

F_2 = I_2 \Delta l B_1\) , (1)

где B1 — индукции магнитного поля, создаваемого первым проводником. При записи этой формулы учтено, что вектор индукции \(

\vec B_1\) перпендикулярен второму проводнику. Индукция поля, создаваемого прямым током в первом проводнике, в месте расположения второго, равна

Из формул (1), (2) следует, что сила, действующая на выделенный участок второго проводника, равна

Легко убедится, что такая же по модулю сила действует на участок такой же длины первого проводника. В этом можно убедиться, просто взглянув внимательно на полученный результат (3) – силы токов входят в эту формулу симметрично. Таким образом, силы взаимодействия между проводниками удовлетворяют третьему закону Ньютона.

Можно наглядно проиллюстрировать взаимодействие проводников, построив картины силовых линий магнитных полей, создаваемых двумя параллельными проводниками. Если мы умеем рассчитывать поля, то по известному алгоритму можно построить эти силовые линии, затратив немного усилий. Вспомним также, что основоположник теории электромагнитного поля Майкл Фарадей воспринимал силовые линии (магнитного и электрического полей) как упругие трубки, благодаря натяжению которых и возникают силы взаимодействия. Ниже представлены точно рассчитанные картины силовых линий магнитных полей в плоскости перпендикулярной двум длинным проводникам, по которым протекают постоянные электрические токи.

Читайте также:  Пусковые токи для инверторов

Img Slob-10-12-040.jpg

Так на рис.40 показаны силовые линии, для токов текущем в одном направлении, на рис. 40.а силы токов равны, а на рис. 40.б различны. Не правда ли – эти «упругие трубки» стягивают проводники?

Img Slob-10-12-041.jpg

На рис. 41 токи текут в противоположных направлениях, в обоих случаях силы токов различны. Здесь проводникам явно не нравится находиться рядом – они стремятся разойтись.

Задание для самостоятельной работы.

  1. Задайте самостоятельно направления токов на рис. 40, 41 и укажите направления силовых линий на этих рисунках.

Источник

Магнитное поле

На рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них. Сила тока \(I_1\) в первом проводнике больше силы тока \(I_2\) во втором. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля этих проводников в точке \(A\) , расположенной точно посередине между проводниками? Ответ запишите словом (словами)

Первый проводник создаёт в точке А магнитное поле, направленное вверх, а второй проводник — направленное вниз. Поскольку точка А расположена точно посередине между проводниками и \(I_1>I_2\) , то модуль индукции магнитного поля, создаваемого первым проводником, больше модуля индукции магнитного поля, создаваемого вторым проводником. И значит, суммарный вектор индукции направлен вверх.

На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в плоскости чертежа. В центре витка вектор индукции магнитного поля направлен
1) вертикально вниз
2) вертикально вверх
3) горизонтально к нам
4) горизонтально от нас

Направление вектора магнитной индукции определим по правилу правой руки. В соответствии с этим правилом, получаем направление вектора \(\vec\) от нас перпендикулярно плоскости чертежа .

По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи \(I\) (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке С?
1) к нам
2) от нас
3) вверх
4) вниз

Направление вектора магнитной индукции определим по правилу правой руки. В соответствии с этим правилом, получаем направление вектора \(\vec\) (от верхнего проводника) от нас перпендикулярно плоскости чертежа, направление вектора \(\vec\) (от нижнего проводника) на нас перпендикулярно плоскости чертежа. \[\vec=\vec+\vec\] Таким образом, результирующее поле направлено от нас.

По трем тонким длинным прямым параллельным проводникам текут одинаковые токи \(I\) . Как направлена сила Ампера, действующая на проводник 1 со стороны двух других (см. рис.)? Расстояния между соседними проводниками одинаковы.
1) к нам
2) от нас
3) вверх
4) вниз

Направление вектора магнитной индукции определим по правилу правой руки. В соответствии с этим правилом, получаем направление вектора \(\vec\) (от среднего проводника) к нам перпендикулярно плоскости чертежа, направление вектора \(\vec\) (от нижнего проводника) на нас перпендикулярно плоскости чертежа. \[\vec=\vec+\vec\] Таким образом, результирующее поле направлено к нам. Теперь по правилу левой руки определим направление силы Ампера. Сила Ампера направлена вниз.

На рисунке изображен длинный цилиндрический проводник, по которому протекает электрический ток. Направление тока указано стрелкой. Как направлен вектор магнитной индукции поля этого тока в точке C?
1) в плоскости чертежа вверх
2) в плоскости чертежа вниз
3) от нас перпендикулярно плоскости чертежа
4) к нам перпендикулярно плоскости чертежа

Читайте также:  Однополупериодный ток синусоидальной формы

Направление вектора магнитной индукции определим по правилу правой руки. “Если обхватить проводник правой рукой так, чтобы оттопыренный большой палец указывал направление тока, то остальные пальцы покажут направление огибающих проводник линий магнитной индукции поля, создаваемого этим током, а значит и направление вектора магнитной индукции, направленного везде по касательной к этим линиям.” В соответствии с этим правилом, получаем направление вектора \(\vec\) в точке С от нас перпендикулярно плоскости чертежа.

Магнитная стрелка компаса зафиксирована (северный полюс затемнен, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит, затем освободили стрелку. При этом стрелка
1) повернется на \(180^<\circ>\)
2) повернется на \(90^<\circ>\) против часовой стрелки
3) повернется на \(90^<\circ>\) по часовой стрелке
4) останется в прежнем положении

Одноименные полюса магнитов отталкиваются, а разноименные полюса – притягиваются. После освобождения стрелки она повернется к магниту южным полюсом, а значит, повернется против часовой стрелки на \(90^<\circ>\)

Два параллельных длинных проводника с токами \(I_1\) и \(I_2\) расположены перпендикулярно плоскости чертежа (см. рис.). Векторы \(B_1\) и \(B_2\) индукции магнитных полей, создаваемых этими проводниками в точке А, направлены в плоскости чертежа следующим образом:
1) \(B_1\) — вверх; \(B_2\) — вниз
2) \(B_1\) — вниз; \(B_2\) — вверх
3) \(B_1\) — вниз; \(B_2\) — вниз
4) \(B_1\) — вверх; \(B_2\) — вверх

Направление вектора магнитной индукции определим по правилу правой руки. “Если обхватить проводник правой рукой так, чтобы оттопыренный большой палец указывал направление тока, то остальные пальцы покажут направление огибающих проводник линий магнитной индукции поля, создаваемого этим током, а значит и направление вектора магнитной индукции, направленного везде по касательной к этим линиям.”
В соответствии с этим правилом, получаем направление вектора \(\vec\) (от первого проводника) вниз в плоскости чертежа, направление вектора \(\vec\) (от второго проводника) вверх в плоскости чертежа.

Источник



По двум тонким прямым проводникам параллельным друг другу текут постоянные электрические токи

По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке С?

1) к нам \odot

2) от нас \otimes

3) вверх \uparrow

4) вниз \downarrow

Вектор магнитной индукции в точке C есть сумма векторов магнитной индукции от двух проводников. Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Следовательно, вектор магнитной индукции от нижнего проводника направлен в точке C к нам, а вектор магнитной индукции от верхнего проводника — от нас. Однако модуль вектора магнитной индукции ослабевает по мере удаления от проводника. Таким образом, суммарный вектор магнитной индукции в точке C направлен от нас.

Направление векторов магнитной индукции можно находить по правилу буравчика: «Если вращать ручку буравчика (винт) в направлении тока в витке, то направление поступательного движения буравчика (винта) совпадает с направлением вектора магнитной индукции в центре витка».

Источник