Меню

По какому правилу определяется направление магнитных силовых линий вокруг проводника с током

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Особая форма существования материи – магнитное поле Земли способствовало зарождению и сохранению жизни. Осколки этого поля, куски руды, притягивающие железо, привели электричество на службу человечеству. Без электроэнергии выжить будет немыслимо.

Что такое линии магнитной индукции

Магнитное поле определено напряженностью в каждой точке его пространства. Кривые, объединяющие точки поля с равными по модулю напряженностями называются линиями магнитной индукции. Напряжённость магнитного поля в конкретной точке — силовая характеристика и для ее оценки применяется вектор магнитного поля В. Его направление в конкретной точке на линии магнитной индукции происходит по касательной к ней.

В случае, если на точку в пространстве влияет несколько магнитных полей, то напряженность определяется суммированием векторов магнитной индукции каждого действующего магнитного поля. При этом напряженность в конкретной точке суммируется по модулю, а вектор магнитной индукции определяется как сумма векторов всех магнитных полей.

Напрвление вектора магнитной индукции постоянного магнита.

Несмотря на то, что линии магнитной индукции невидимые, они обладают определенными свойствами:

  • Принято считать, что силовые линии магнитного поля выходят на полюсе (N), а возвращаются с (S).
  • Направление вектора магнитной индукции происходит по касательной к линии.
  • Несмотря на сложную форму, кривые не пересекаются и обязательно замыкаются.
  • Магнитное поле внутри магнита однородно и плотность линий максимальна.
  • Через точку поля проходит только одна линия магнитной индукции.

Направление линий магнитной индукции внутри постоянного магнита

Исторически, во многих местах Земли давно замечено природное качество некоторых камней притягивать к себе железные изделия. Со временем, в древнем Китае, вырезанные определенным образом из кусков железной руды (магнитного железняка) стрелки превратились в компасы, показывающие направление к северному и южному полюсу Земли и позволяющие ориентироваться на местности.

Исследования этого природного явления определили, что более сильное магнитное свойство дольше сохраняется у сплавов железа. Более слабыми природными магнитами являются руды, содержащие никель или кобальт. В процессе изучения электричества, ученые научились получать искусственно намагниченные изделия из сплавов, содержащих железо, никель или кобальт. Для этого их вносили в магнитное поле, создаваемое постоянным электрическим током, а переменным током, если необходимо, размагничивали.

Изделия, намагниченные в природных условиях или полученные искусственно, имеют два различных полюса – места, где магнетизм наиболее сконцентрирован. Взаимодействуют магниты между собой посредством магнитного поля так, что одноименные полюса отталкиваются и разноименные притягиваются. Это образует вращающие моменты для их ориентации в пространстве более сильных полей, например, поля Земли.

Визуальное изображение взаимодействие слабо намагниченных элементов и сильного магнита дает классический опыт со стальными опилками, рассыпанными на картоне и плоским магнитом под ним. Особенно если опилки продолговатые, наглядно видно, как выстраиваются они вдоль силовых магнитных линий поля. Меняя положение магнита под картоном наблюдается изменение конфигурации их изображения. Применение компасов в этом опыте еще усиливает эффект понимания строения магнитного поля.

Читайте также:  Быстродействующие электромагниты постоянного тока

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Одно из качеств силовых магнитных линий, открытых еще М. Фарадеем, говорит о том, что они замкнуты и непрерывны. Линии, выходящие из северного полюса постоянного магнита, входят в южный полюс. Однако внутри магнита они не размыкаются и входят из южного полюса в северный. Количество линий внутри изделия максимально, магнитное поле однородно, а индукция может слабеть при размагничивании.

Определение направления вектора магнитной индукции с помощью правила буравчика

В начале 19 века ученые обнаружили, что магнитное поле создается вокруг проводника с протекающим по нему током. Возникшие силовые линии ведут себя по таким же правилам, как и с природным магнитом. Больше того, взаимодействие электрического поля проводника с током и магнитного поля послужило основой электромагнитной динамики.

Понимание ориентации в пространстве сил во взаимодействующих полях позволяет рассчитать осевые вектора:

  • Магнитной индукции;
  • Величины и направления индукционного тока;
  • Угловой скорости.

Такое понимание было сформулировано в правиле буравчика.

Совместив поступательное движение правостороннего буравчика с направлением тока в проводнике получаем направление линий магнитного поля, на которое указывает вращение рукоятки.

Не являясь законом физики, правило буравчика в электротехнике применяется для определения не только направления силовых линий магнитного поля зависящего от вектора тока в проводнике, но и наоборот, определение направления тока в проводах соленоида в связи с вращением линий магнитной индукции.

Понимание этой взаимосвязи позволило Амперу обосновать закон вращающихся полей, что привело к созданию электрических двигателей различного принципа. Вся втягивающая аппаратура, использующая катушки индуктивности, соблюдает правило буравчика.

Правило правой руки

Определение направления тока движущемся в магнитном поле проводника (одной стороны замкнутого витка проводников) наглядно демонстрирует правило правой руки.

Правило правой руки для определения направления течения тока, движущемся в магнитном поле проводника.

Оно говорит о том, что правая ладонь, повернутая к полюсу N (силовые линии входят в ладонь), а большой палец, отклоненный на 90 градусов показывает направление движения проводника, то в замкнутом контуре (витке) магнитное поле индуцирует электрический ток, вектор движения которого указывают четыре пальца.

Правило правой руки для определения направления вектора магнитной индукции.

Это правило демонстрирует как изначально появились генераторы постоянного тока. Некая сила природы (вода, ветер) вращала замкнутый контур проводников в магнитном поле вырабатывая электроэнергию. Затем двигатели, получив электрический ток в постоянном магнитном поле преобразовывали его в механическое движение.

Правило правой руки, для определения напрвления тока в катушке индуктивности.

Правило правой руки справедливо и в случае катушек индуктивности. Движение внутри них магнитного сердечника приводит к появлению индукционных токов.

Если четыре пальца правой руки совмещены с направлением тока в витках катушки, то отклоненный на 90 градусов большой палец укажет на северный полюс.

Правила буравчика и правой руки удачно демонстрируют взаимодействие электрического и магнитного полей. Они делают доступным понимание работы различных устройств в электротехнике практически всем, а не только ученым.

Читайте также:  Пусковой ток для мицубиси

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Что такое ЭДС индукции и когда возникает?

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

История открытия электричества

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Чем отличаются и где используются постоянный и переменный ток

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Для чего нужен магнитный пускатель и как его подключить

Источник

По какому правилу определяется направление магнитных силовых линий вокруг проводника с током

Азбука физики
Азбука физики
Научные игрушки
Научные игрушки
Простые опыты
Простые опыты
Этюды об ученых
Этюды об ученых
Решение задач
Решение задач
Презентации
Учебные презентации
Книги по физике Повышение IQ
Умные книжки
Умные книжки
Есть вопросик?
Есть вопросик
Его величество.
Его величество
Музеи науки.
Музеи науки
Достижения.
Достижения
Викторина по физике
Викторина для физика
Физика в кадре
Физика в кадре
Учителю
В помощь учителю
Читатели пишут
Читатели пишут

ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ЛИНИЙ МАГНИТНОГО ПОЛЯ

ПРАВИЛО БУРАВЧИКА
для прямого проводника с током

— служит для определения направления магнитных линий ( линий магнитной индукции)
вокруг прямого проводника с током.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Допустим, проводник с током расположен перпендикулярно плоскости листа:
1. направление эл. тока от нас ( в плоскость листа)

Согласно правилу буравчика, линии магнитного поля будут направлены по часовой стрелке.

или
2. направление эл. тока на нас ( из плоскости листа),

Тогда, согласно правилу буравчика, линии магнитного поля будут направлены против часовой стрелки.

ПРАВИЛО ПРАВОЙ РУКИ
для соленоида ( т.е. катушки с током)

— служит для определения направления магнитных линий (линий магнитной индукции) внутри соленоида.

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

1. Как взаимодействуют между собой 2 катушки с током?

2. Как направлены токи в проводах, если силы взаимодействия направлены так, как на рисунке?

3. Два проводника расположены параллельно друг другу. Укажите раправление тока в проводнике СД.

Жду решений на следующем уроке на «5» !

Известно, что сверхпроводники ( вещества, обладающие при определенных температурах практически нулевым электрическим сопротивлением ) могут создавать очень сильные магнитные поля. Были проделаны опыты по демонстрации подобных магнитных полей. После охлаждения керамического сверхпроводника жидким азотом на его поверхность помещали небольшой магнит. Отталкивающая сила магнитного поля сверхпроводника была столь высокой, что магнит поднимался, зависал в воздухе и парил над сверхпроводником до тех пор, пока сверхпроводник, нагреваясь, не терял свои необыкновенные свойства.

Источник

Как определить направление магнитных линий

Как определить направление магнитных линий

  • Как определить направление магнитных линий
  • Как определить направление силы Лоренца
  • Как определить направление магнитной индукции
  • — источник тока (проводник, соленоид);
  • — правая рука;
  • — магнитные стрелки.
  • Как увидеть магнитное полеКак увидеть магнитное поле
  • Каким образом определить магнитное поле токаКаким образом определить магнитное поле тока
  • Как найти индукцию поляКак найти индукцию поля
  • Как определить направление силы токаКак определить направление силы тока
  • Как определить направление вектора индукции
  • Как определить направление линии индукцииКак определить направление линии индукции
  • Как найти направление магнитного поляКак найти направление магнитного поля
  • Как найти вектор магнитной индукцииКак найти вектор магнитной индукции
  • Как обнаружить магнитное полеКак обнаружить магнитное поле
  • Как определить полярность магнитаКак определить полярность магнита
  • Как определить вектор магнитной индукцииКак определить вектор магнитной индукции
  • Как определить магнитное полеКак определить магнитное поле
  • Как работают правила левой и правой рукиКак работают правила левой и правой руки
  • Что такое сила АмпераЧто такое сила Ампера
  • Как определить магнитную индукцию поляКак определить магнитную индукцию поля
  • Как измерить магнитное полеКак измерить магнитное поле
  • Как определить азимут компасомКак определить азимут компасом
  • Как измерить азимутКак измерить азимут
  • Как определить силу магнитного поляКак определить силу магнитного поля
  • В чем состоит принцип суперпозиции магнитных полейВ чем состоит принцип суперпозиции магнитных полей
  • Как обнаружить электрическое полеКак обнаружить электрическое поле
  • Как найти дирекционный уголКак найти дирекционный угол
  • Как научиться пользоваться компасомКак научиться пользоваться компасом
Читайте также:  От чего зависит ток якоря в генераторе

Источник



По какому правилу определяется направление магнитных силовых линий вокруг проводника с током

ПРАВИЛО БУРАВЧИКА для прямого проводника с током

— служит для определения направления магнитных линий ( линий магнитной индукции)
вокруг прямого проводника с током.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

Допустим, проводник с током расположен перпендикулярно плоскости листа:
1. направление эл. тока от нас ( в плоскость листа)

Согласно правилу буравчика, линии магнитного поля будут направлены по часовой стрелке.

или
2. направление эл. тока на нас ( из плоскости листа),

Тогда, согласно правилу буравчика, линии магнитного поля будут направлены против часовой стрелки.

ПРАВИЛО ПРАВОЙ РУКИ для соленоида, т.е. катушки с током

— служит для определения направления магнитных линий (линий магнитной индукции) внутри соленоида.

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

1.Как взаимодействуют между собой 2 катушки с током?

2. Как направлены токи в проводах, если силы взаимодействия направлены так, как на рисунке?

3. Два проводника расположены параллельно друг другу. Укажите раправление тока в проводнике СД.

Жду решений на следующем уроке на «5»!

Известно, что сверхпроводники ( вещества, обладающие при определенных температурах практически нулевым электрическим сопротивлением) могут создавать очень сильные магнитные поля. Были проделаны опыты по демонстрации подобных магнитных полей. После охлаждения керамического сверхпроводника жидким азотом на его поверхность помещали небольшой магнит. Отталкивающая сила магнитного поля сверхпроводника была столь высокой, что магнит поднимался, зависал в воздухе и парил над сверхпроводником до тех пор, пока сверхпроводник, нагреваясь, не терял свои необыкновенные свойства.

Источник