Меню

По роду питающего тока различают реле

Что такое реле: виды, принцип действия и устройство

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.

Содержание статьи

  • Общее описание конструкции
  • Основные характеристики реле
  • Виды реле: контактные и бесконтактные
    • Контактные
    • Бесконтактные
  • Классификация реле по способу включения
    • Первичные
    • Вторичные
  • Виды реле по назначению
    • Реле управления
    • Реле защиты
    • Сигнализации
  • Разновидности электромеханических реле
    • Электромагнитные
    • Электротепловые (термические)
    • Индукционные
  • Другие виды электрических реле
    • Твердотельные
    • Герконовые
    • Фотоэлектронные (фотореле)
  • Виды реле по типу поступающего параметра
    • Реле тока
    • Реле напряжения
    • Реле частоты
    • Реле мощности
    • Реле давления
    • Реле акустические
    • Газовые реле
  • Промежуточные реле
  • Обозначение реле на схеме

Общее описание конструкции

Понятие «реле» объединяет целое семейство устройств разной конструкции. Но в общем случае реле состоит из трех основных функциональных элементов:

  • Воспринимающий. Это первичный элемент, который воспринимает контролируемую величину и преобразует ее в другую физическую величину.
  • Промежуточный. Сравнивает полученное значение с заданным параметром. Если это значение выше или ниже заданного параметра, то на исполнительный элемент передается первичное воздействие.
  • Исполнительный. Этот элемент передает воздействие в цепи, управляемые реле. В результате такого воздействия может произойти: размыкание или соединение управляемой цепи, переключение параметров тока.

Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.

Основные характеристики реле

Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:

  • Время срабатывания – промежуток времени между поступлением управляющего сигнала и воздействием на управляемые цепи.
  • Коммутируемая мощность – допустимая мощность электроцепи или электроустановки, которой будет управлять реле.
  • Уставка – обычно это регулируемый параметр, который определяет величину поступающего параметра (тока, напряжения, частоты, давления, температуры), при которой происходит срабатывание реле.

Виды реле: контактные и бесконтактные

По устройству исполнительного компонента реле делят на контактные и бесконтактные.

Контактные

Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.

Бесконтактные

Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.

Классификация реле по способу включения

Первичные

Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.

Вторичные

Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.

Виды реле по назначению

По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.

Реле управления

Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.

Реле защиты

Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.

Сигнализации

Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).

Разновидности электромеханических реле

Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.

Электромагнитные

Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:

  • На катушку сердечника подается управляющий ток.
  • В сердечнике под воздействием электрического тока создается магнитное поле, притягивающее контактную группу.
  • В зависимости от типа реле, контакты замыкают или размыкают электрическую цепь.

Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.

Электротепловые (термические)

Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.

Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.

Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.

Индукционные

Принцип действия этих устройств основан на взаимодействии между переменными магнитными потоками и токами, которые формируют переменные магнитные потоки. Индукционные приборы рассчитаны только на использование в цепях переменного тока. Существуют три типа индукционных реле – с рамкой, диском, цилиндрическим ротором («стаканом»). Эти устройства широко востребованы в системах релейной защиты и автоматики.

Другие виды электрических реле

Твердотельные

Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:

  • Низкий уровень шума при работе.
  • Очень высокая наработка на отказ, которая в 100 раз и более превышает ресурс электромагнитных устройств.
  • Быстродействие, составляющее доли миллисекунд, у электромагнитных 50 мс – 1с.
  • Электропотребление ниже на 95 %.

Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.

Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.

Герконовые

Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.

Читайте также:  Меры защиты человека от поражения электрическим током реферат

При использовании герконовых реле следует избегать:

  • близкого присутствия источника ультразвука, который будет негативно влиять на работоспособность;
  • воздействия постороннего магнитного поля;
  • механических повреждений.

Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.

Фотоэлектронные (фотореле)

Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.

Виды реле по типу поступающего параметра

По этому параметру разделяют реле: тока, мощности, частоты, напряжения, давления, акустических величин, количества газа. Устройства могут быть максимальными и минимальными. Реле, которые срабатывают при превышении заданной величины, называют «максимальными», а при ее падении ниже заданного уровня – «минимальными».

Реле тока

Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.

Реле напряжения

Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.

Реле частоты

Служат для контроля частоты переменного тока, которая должна быть равна 50 или 60 Гц в одно- и трехфазных сетях. Обычно имеют фиксированные задержки срабатывания. Пороги размыкания цепи, которая находится под контролем, можно регулировать. Режим работы этого устройства может предусматривать наличие «памяти» аварии.

Реле мощности

Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.

Реле давления

Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.

Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.

Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.

Реле акустические

Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.

Устройства, срабатывающие на любой шум, часто используются совместно с системой освещения. Они реагируют на любой возникающий шум в помещении и дают сигнал на включение света. Обычно их устанавливают в коридорах и на лестничных площадках. Также акустические реле широко используются в охранных системах, «интеллектуальных» игрушках.

Газовые реле

Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.

Промежуточные реле

Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:

  • Нормально разомкнутые (замыкающие). При отсутствии электропитания находятся в разомкнутом состоянии. При подаче напряжения происходит их замыкание.
  • Нормально замкнутые (размыкающие). В нормальном состоянии такие контакты находятся в замкнутом состоянии, а при поступлении электропитания контакты размыкаются.
  • Перекидные. В таких реле при отсутствии напряжения имеется средний контакт, замкнутый с одним из неподвижных контактов. При подаче тока средний контакт разрывает связь с первым неподвижным контактом и замыкается со вторым неподвижным контактом.

Обозначение реле на схеме

Обозначение реле на принципиальной схеме

Обозначение реле на принципиальной схеме

На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами:

  • KA – тока;
  • KV – напряжения;
  • KB – блокировки;
  • KBS – блокировки от многократного включения;
  • KH – указательное;
  • KL – промежуточное;
  • KQ – фиксации положения выключателя;
  • KSV – контроля цепи напряжения;
  • KSP – контроля давления;
  • KSH – контроля напора;
  • KSL – контроля уровня жидкости;
  • KSR – скорости;
  • KSQ – состава вещества;
  • KW – мощности;
  • KZ – сопротивления.

Источник

Классификация реле

Реле являются элементной базой систем железнодорожной автоматики и телемеханики и обеспечивают прежде всего зависимости, необходимые для обеспечения безопасности движения поездов.
Реле железнодорожной автоматики разделяют: по принципу действия — на электромагнитные, электромагнитные с термоэлементом, индукционные (секторные), электронные;
по роду тока, питающего обмотку, — на реле постоянного тока (нейтральные, поляризованные, нейтрально-поляризованные или комбинированные) и переменного тока;
по числу обмоток на сердечнике (сердечниках) — на одно-, двух- и многообмоточные;
по числу положений контактной системы — на двух- и трехпозиционные;
по номинальному напряжению (току);
по времени срабатывания (притяжения) и отпускания якоря — на быстродействующие, нормально действующие, медленно действующие и временные;
по режиму работы — на реле для длительного (непрерывного) режима работы и кратковременного (импульсного) режима;
по активному сопротивлению обмоток, числу витков в обмотках, контактной системе.
Реле железнодорожной автоматики подразделяют также на реле I и II классов надежности. К реле I класса надежности относятся реле, для которых не требуется дополнительный схемный контроль отпускания якоря или дублирование в электрических схемах. Требования к реле I класса надежности следующие: надежное отпускание якоря под действием массы якоря и связанных с ним подвижных частей при отключении напряжения от его обмоток; исключение сваривания замыкающих (фронтовых) контактов и др. Реле I класса применяют в аппаратуре СЦБ, обеспечивающей безопасность движения поездов.
Реле, у которых отпускание якоря гарантируется в меньшей степени и осуществляется в основном под действием реакции контактных пружин, имеют II класс надежности. Защиту от сваривания контактов в этих реле не предусматривают. Реле II класса надежности применяют в аппаратуре, к которой не предъявляются повышенные требования по безопасности.

Читайте также:  Определить направление силы тока линий магнитного поля

Малогабаритные реле

Малогабаритные реле постоянного тока относятся к реле I класса надежности и входят в состав аппаратуры СЦБ, обеспечивающей безопасность движения поездов.
Малогабаритные реле имеют два исполнения: штепсельное (в оболочке) для установки на стативах и в релейных шкафах и нештепсельное (с ламелями под пайку) для установки в закрытых релейных блоках. При этом значительная часть штепсельных реле имеет нештепсельные аналоги. В обозначении типа штепсельного малогабаритного реле присутствует буква Ш.
Промышленность изготовляет следующие типы малогабаритных штепсельных реле:
без выпрямительной приставки:
НМШ, АНШ — нейтральные нормально действующие;
НМШМ, АНШМ — нейтральные медленно действующие;
НМШТ, АНМШТ — нейтральные с термоэлементом;
НМПШ — нейтральное пусковое;
ПМПУШ — поляризованное пусковое;
КМШ — комбинированное (с нейтральным и поляризованным якорями);
с выпрямительной приставкой:
ИМШ — поляризованное импульсное;
ИМВШ — поляризованное импульсное;
ОМШ, ОМШМ, АОШ — нейтральные огневые;
АШ, АПШ, АСШ — нейтральные аварийные.
Малогабаритные реле с выпрямительными приставками можно включать в цепи постоянного и переменного тока.
В поляризованных и комбинированных реле установлены поляризующие магниты, за счет которых поляризованный якорь переключается с изменением полярности источника питания постоянного тока, подключаемого к обмотке.
Конструктивные особенности малогабаритных штепсельных реле показаны на примере реле НМШ1 (рис. 1), имеющего следующие основные части: магнитную систему, состоящую из якоря 1, ярма 2, сердечника 12, на котором размещены две катушки 11; штепсельные выводы 8 для подключения обмоток; контактные системы, состоящие из фронтового 5, подвижного 6 и тылового 4 контактов; межконтактные изоляционные пластмассовые прокладки 7, пластмассовое основание 10\ направляющий штырь 9\ защитный колпак 3.

реле HMIIII
Рис. 1. Конструктивные особенности реле HMIIII

Рис. 2. Расположение контактов и схема соединения обмоток реле НМШ1, НМ1 (вид с монтажной стороны)
Шпули двух катушек нормально действующих реле выполнены из пластмассы, одной или двух катушек медленно действующих реле — из меди. В медленно действующих реле с одной катушкой взамен второй имеется медная гильза.
Катушки (обмотки) реле могут быть включены раздельно, последовательно и параллельно.
В качестве исходного для нейтральных малогабаритных штепсельных реле используется основание реле НМШ1, имеющего восемь контактных групп (рис. 2). Малогабаритные реле с меньшим числом контактов выполняют с применением меньшего числа штепсельных выводов реле НМШ1, но с сохранением их расположения и нумерации.

Рис. 3. Расположение и нумерация выводов реле ПМПУИГ, ИМВШ, ИМШ1, КМШ, км
Поляризованные реле ПМПУШ, ИМШ1, ИМВШ и комбинированные КМШ и КМ имеют расположение и нумерацию штепбельных выводов, приведенные на рис. 3.
Электрические и временные характеристики малогабаритных реле приведены в табл. 1—7. В табл. 1, 4 и 7 для некоторых реле приведены электрические характеристики реле по току и напряжению, не совпадающие с наименованием столбцов (значение тока в столбце с напряжениями и наоборот); в табл. 1—7 приведены номинальные сопротивления обмоток реле по постоянному току.

Рис. 4. Схема включения выпрямителей и обмоток реле НМВШ2,
АНВШ2, АШ2-12/24, АШ2-110/220, АПШ-24, АПШ-110/127,
АПШ-220, расположение контактов реле АПШ-24, АПШ-110/127, АПШ-220

Рис. 5. Схемы включения выпрямителей и обмоток реле АСШ-2, ОМШ2, ОМШМ, АОШ2
В табл. 5.3—5.5 использована нумерация штепсельных выводов встроенных выпрямителей и обмоток реле НМВШ2, АНВШ2, АШ2, АПШ (рис. 4), АСШ и схемы включения встроенных выпрямителей и обмоток реле ОМШ2, ОМШМ, АОШ2 (рис. 5).
В табл. 5.1. время замедления на отпускание реле НМШМ2-1.5 указано при токе 0,5 А; НМШМ2-11/500 по обмотке сопротивлением 11 Ом — при токе 0,25 А; НМПШЗ-0,2/250 по обмотке сопротивлением 0,2 Ом — при токе 1,5 А, остальных — при номинальном напряжении (токе).
Для подключения обмоток двухобмоточных реле НМШ, НМШМ и НМПШ используют штепсельные выводы 1-3, 2-4, однообмоточных — 1-3, двухобмоточных реле АНШ, АНШМ—21-61,41-81, однообмоточных—21-61.

Таблица l. Электрические и временные характеристики реле НМШ, НМШМ, АНШМ, АНШ, НМПШ

Сопротив
ление
обмоток,
Ом

Источник

Реле постоянного и переменного тока — особенности и отличия

В широком смысле слова, под реле понимают электронное или электромеханическое устройство, назначение которого — замыкать или размыкать электрическую цепь в ответ на определенное входное воздействие. Классическое реле — электромагнитное.

При прохождении тока через обмотку такого реле, возникает магнитное поле, которое, воздействуя на ферромагнитный якорь реле, вызывает перемещение данного якоря, тогда как он, будучи механически связан с контактами, замыкает или размыкает их в результате своего перемещения. Таким образом при помощи реле можно осуществлять замыкание или размыкание, то есть механическую коммутацию внешних электрических цепей.

Электромагнитные реле

Электромагнитное реле состоит минимум из трех (главных) частей: неподвижного электромагнита, подвижного якоря и переключателя. Электромагнит, по сути, — катушка, намотанная медным проводом на ферромагнитный сердечник. В роли якоря обычно выступает пластина, изготовленная из магнитного металла, которая и призвана воздействовать на коммутирующие контакты или на группу таких контактов, собственно и формирующих переключатель реле.

По сей день электромагнитные реле находят самое широкое применение в устройствах автоматики, телемеханики, электроники, вычислительной техники, и во многих других областях, где необходимо автоматически осуществлять коммутацию. Практически реле используется как управляемый механический выключатель или переключатель. Для коммутации же больших токов используются специальные реле, называемые контакторами.

При всем при этом электромагнитные реле подразделяются на реле постоянного тока и на реле переменного тока, в зависимости от того, какого рода ток необходимо подать на обмотку реле, чтобы его переключатель сработал. Далее рассмотрим различия между реле постоянного тока и реле переменного тока.

Электромагнитные реле на лабораторном стенде

Электромагнитное реле постоянного тока

Говоря о реле постоянного тока, как правило имеют ввиду нейтральное (не поляризованное) реле, которое одинаково реагирует на ток любого направления в его обмотке — якорь притягивается к сердечнику, размыкая (или замыкая) контакты. По исполнению якоря реле бывают с втяжным якорем или с поворачивающимся якорем, но в любом случае функционально данные изделия полностью схожи.

Пока в обмотке реле ток не течет, его якорь находится максимально далеко от сердечника благодаря действию возвратной пружины. В этом состоянии контакты реле разомкнуты (для нормально-разомкнутого реле или для нормально-разомкнутой контактной группы данного реле) либо замкнуты (для нормально-замкнутого реле или для нормально-замкнутой контактной группы).

Реле постоянного тока

При прохождении постоянного тока через обмотку реле, в сердечнике и в воздушном зазоре между сердечником и якорем реле создается магнитный поток, инициирующий магнитное усилие, механически притягивающее якорь к сердечнику.

Якорь перемещаясь, переводит контакты в состояние противоположное исходному — замыкает контакты, если в исходном состоянии они были разомкнуты, либо размыкает их, если исходное состояние контактов было замкнутым.

Если в реле присутствует две группы контактов противоположного исходного состояния, то те что были замкнуты — размыкаются, а те что были разомкнуты — замыкаются. Так работает реле постоянного тока.

Электромагнитное реле переменного тока

В некоторых случаях бывает так, что источником энергии для питания обмотки реле может выступать только переменный ток. Тогда ничего не остается, как использовать для коммутации реле переменного тока, то есть такое реле, обмотка которого способна воздействовать на якорь при пропускании через нее переменного, а не постоянного тока.

В отличие от реле постоянного тока, реле переменного тока тех же размеров и при аналогичном среднем значении магнитной индукции в его сердечнике, обеспечивает вдвое меньшее магнитное усилие на якорь, чем в реле постоянного тока.

Суть в том, что электромагнитное усилие, в случае переменного тока, если подать его на обмотку обычного реле, носило бы ярко выраженный пульсирующий характер, и обращалось бы в ноль два раза за период колебаний питающего переменного напряжения.

Читайте также:  Переменный ток уравнение синусоидального напряжения

Значит якорь испытывал бы вибрацию. Но так получилось бы в том случае, если не применять дополнительные меры. И дополнительные меры применяются, как раз и формируя различия в конструкциях реле переменного и постоянного тока.

Реле переменного тока

Реле переменного тока устроено и работает следующим образом. Переменный магнитный поток основной обмотки, проходя через часть сердечника с прорезью, разделяется на две части. Одна часть магнитного потока проходит через экранированную часть разделенного полюса (через ту, на которой установлен короткозамкнутый проводящий виток), тогда как другая часть магнитного потока направляется через неэкранированную часть разделенного полюса.

Поскольку в короткозамкнутом витке наводится ЭДС и соответственно ток, то магнитный поток данного витка (наведенного в нем тока) противодействует вызывающему его магнитному потоку, что приводит к тому, что магнитный поток в части сердечника с витком отстает по фазе от потока в части сердечника без витка на 60-80 градусов.

В результате суммарное тяговое усилие на якорь никогда не обращается в ноль, поскольку оба потока проходят через ноль в разные моменты времени, и в якоре не возникает сколь-нибудь значимой вибрации. Формируемое таким образом результирующее усилие на якорь оказывается в состоянии произвести коммутирующее действие.

Источник



Автоматика, телемеханика и связь: Конспект лекций (Элементная база систем железнодорожной автоматики, телемеханики и связи. Комплекс горочной автоматики) , страница 2

В устройствах железнодорожной автоматики нашли широкое применение электрические реле, которые по принципу действия делятся на электромагнитные, магнитоэлектрические, электродинамические, индукционные и другие.

В зависимости от рода тока, питающего обмотку возбуждения, различают реле постоянного тока и переменного тока. В свою очередь реле постоянного тока делятся на нейтральные (срабатывание этих реле определяется только величиной магнитного поля и не зависит от направления тока в обмотке), поляризованные ( положение якоря, а следовательно зависит от направления тока в обмотке) и комбинированные (имеют поляризованный и нейтральный якоря с общей магнитной системой).

По времени притяжения или отпускания якоря реле подразделяются на нормальнодейсвующие, быстродействующие и медленнодействующие.

По надежности действия электрические реле делятся на первый и низшие классы. Реле первого класса надежности обладают следующими свойствами, обеспечивающие безопасность функционирования:

переход якоря из притянутого состояния в отпущенное после выключения тока в обмотке происходит только под действием своего веса;

фронтовые контакты при срабатывании реле не должны свариваться с общими контактами, что достигается изготовлением их из разных материалов (металл- уголь);

якорь не должен прилипать к сердечнику за счет остаточной магнитной индукции при отсутствии тока в обмотке;

на реле не должны влиять факторы внешней среды, для чего корпус реле закрывается герметически пломбируемым кожухом.

К реле низших классов надежности не предъявляются требования несвариваемости контактов, а возврат якоря в исходное состояние допускается под действием упругости контактных пружин.

Нейтральное реле постоянного тока первого класс надежности состоит из сердечника 1, катушки возбуждения 2, подвижного якоря 3, и контактной группы 4 показано на рис.1.

При отсутствии тока в катушке якорь реле находится в отпавшем состоянии. При этом замыкаются общий (О) и тыловой (нижний) (Т) контакты. Под действием тока в катушке создается магнитный поток, который, воздействуя на якорь 3, перемещает его вверх. При этом общий контакт (О) замыкается с фронтовым контактом (Ф) и размыкается с тыловым контактом (Т). Этот процесс называется срабатыванием реле.

К поляризованным относятся такие реле, которые содержат в цепи магнитной системы постоянный магнит, с помощью которого реле изменяет свое состояние в зависимости от полярности тока, протекающего в обмотке возбуждения. Поляризованные реле (рис 2) имеют два магнитных потока: рабочий, создаваемый током в обмотке, и поляризующий, создаваемый постоянным магнитом.

Поляризующий поток обеспечивает направленность действия якоря при изменении направления тока в обмотке. Данные реле могут работать в двух режимах: нейтральном, при этом при перемене полярности тока в обмотке возбуждения, якорь переходит от одного полюса к другому. После выключения питания, якорь остается в том положении, которое он занимал при срабатывании.

Для обозначения типов реле железнодорожной автоматики используется шифр, состоящий из букв и цифр. Первая буква означает следующее:

Н- нейтральное, П- поляризованное, К- комбинированное, И- импульсное поляризованное, Т- трансмиттерное, ДС-двухэлементное секторное, АН- автоблокировочное нейтральное и т.д. Буква М расположенная на втором месте шифра, означает «малогабаритное». Третья и следующие буквы означают: Ш — штепсельное, В- с выпрямительным элементом, МТ- медленнодействующее с термическим элементом. Цифры после букв у нейтральных реле обозначают набор контактных групп. Следующие цифры после тире указывают сопротивление обмоток в Омах. Если реле имеет две обмотки с разными сопротивлениями, то цифры стоят в виде дроби.

1.2. Устройство рельсовых цепей и режимы их работы

Рельсовой цепью называется электрическая цепь, в которой в качестве проводников тока используются ходовые рельсовые нити железнодорожного пути.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник