Меню

По закону полного тока линейный интеграл от

По закону полного тока линейный интеграл от

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.

Из теоремы Остроградского-Гаусса вытекает формула:

Учитывая, что cos φ = 1,

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:

Рис. 2. Иллюстрация закона для вакуума

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

Для справки

В самой полной и объемлющей системе измерений СГС напряженность магнитного поля представляется в эрстедах (Э). В другой действующей системе (СИ) она выражается в амперах на один метр (А/метр). Сегодня эрстед постепенно вытесняется более удобной в работе единицей – ампером на метр. При переводе результатов измерений или расчетов из СИ в СГС используется следующее соотношение:

1 Э = 1000/(4π) А/м ≈ 79,5775 Ампер/метр.

В заключительной части обзора отметим, что независимо от того, какая используется формулировка закона полных токов – суть его остается неизменной. Своими словами это можно представить так: он выражает отношения между токами, пронизывающими данный контур и создаваемыми в веществе магнитными полями.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Материалы по теме:

  • Что такое электрическое поле
  • Зависимость сопротивления проводника от температуры
  • Величайшие открытия Николы Тесла

Опубликовано:
03.07.2019
Обновлено: 03.07.2019

9.1.4. Неразветвленная магнитная цепь

Задачей расчета
неразветвленной магнитной цепи в большинстве случаев является определение МДС F= Iw, необходимой для того, чтобы получить
заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).

На рис. 9.9 приведен пример
неразветвленной магнитной цепи — магнитопровод
постоянного поперечного сечения S1 с зазором. На этом же рисунке указаны другие
геометрические размеры обоих участков магнитопровода:
средняя длина l1
магнитной линии первого участка из ферромагнитного материала и длина l2 второго участка — воздушного зазора. Магнитные свойства
ферромагнитного материала заданы основной кривой намагничивания В(Н) (рис. 9.10) и тем самым по (9.4)
зависимостью ma(Н).

По закону полного тока (9.2)

где H1 и H2 — напряженности магнитного поля в первом и втором
участках.

В воздушном зазоре значения
магнитной индукции В2 и
напряженности H2
связаны простым соотношением В2 = mН2, а для участка из ферромагнитного
материала В1 = ma1 Н1.

Кроме того, в неразветвленной
магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:

Ф
= В1
S1 =B2S2, (9.6)

где S1 и S2 — площади поперечного сечения участка из ферромагнитного
материала и воздушного зазора.

Если задан магнитный поток Ф, то по (9.6) найдем значения индукций B1 и B2. Напряженность поля H1 определим по основной кривой намагничивания (рис. 9.10), а
H2= B2m. Далее по (9.5) вычислим необходимое значение МДС.

Сложнее
обратная задача: расчет магнитного потока при заданной
МДС F.

Заменив в (9.5) напряженности
магнитного поля значениями индукции, получим

или с учетом (9.6)

где rMk= lkSkmak — магнитное сопротивление k-гoучастка магнитной цепи, причем магнитное сопротивление k-гo участка нелинейное, если зависимость В(H) для этого участка нелинейная (рис. 9.10), т.е. mak≠ const.

Для участка цепи с нелинейным
магнитным сопротивлением rMможно построить вебер-амперную характеристику — зависимость
магнитного потока Ф от магнитного напряжения UMна этом участке магнитопровода.
Вебер-амперная характеристика участка магнитопровода
рассчитывается по основной кривой намагничивания ферромагнитного материала В(H). Чтобы построить вебер-амперную характеристику, нужно ординаты и
абсциссы всех точек основной кривой намагничивания умножить соответственно на
площадь поперечного сечения участка Sи его среднюю длину l.

На рис. 9.11 приведены
вебер-амперные характеристики Ф(UM1) для ферромагнитного участка с нелинейным магнитным
сопротивлением rM1 и Ф(UM2) для воздушного зазора с постоянным магнитным сопротивлением rM2 = l2 S2m магнитопровода по
рис. 9.9.

Между расчетами нелинейных
электрических цепей постоянного тока и магнитных цепей с
постоянными МДС нетрудно установить аналогию.
Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке
магнитной цепи равно произведению магнитного сопротивления участка на магнитный
поток UM = rMФ. Эта зависимость аналогична закону Ома
для резистивного элемента электрической цепи постоянного тока U = rI.
Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого
контура SUM = SF, что аналогично второму закону Кирхгофа для электрических цепей
постоянного тока SU = SE.

Продолжая дальше аналогию
между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную
магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).

Читайте также:  Какое животное у токи

В качестве иллюстрации
ограничимся применением для анализа неразветвленной магнитной цепи графических
методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной
характеристики (рис. 9.12, б).

Согласно первому методу
построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф(UM1 + UM2), графически складывая по напряжению вебер-амперные
характеристики ее двух участков. При известной МДС F= Iwпо вебер-амперной характеристике всей магнитной цепи
определим рабочую точку А, т. е. магнитный поток Ф,
а по вебер-амперным характеристикам участков магнитопровода
— магнитные напряжения на каждом из них.

Согласно второму методу для
второго (линейного) участка построим нагрузочную характеристику

т. е. прямую, проходящую
через точку Fна оси абсцисс
и точку FrM2на оси ординат. Точка пересечения А нагрузочной
характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1) определяет магнитный поток Ф в цепи и магнитные
напряжения на ферромагнитном участке UM1 и воздушном зазоре UM2. Значение индукции в воздушном зазоре B2 = Ф/S2.

9.1.1. Элементы магнитной цепи

Магнитной цепью (магнитопроводом) называется совокупность различных
ферромагнитных и неферромагнитных частей электротехнических устройств для создания магнитных полей нужных конфигурации и
интенсивности. В зависимости от принципа действия электротехнического
устройства магнитное поле может возбуждаться либо постоянным магнитом, либо
катушкой с током, расположенной в той или иной части магнитной цепи.

К простейшим магнитным цепям
относится тороид из однородного ферромагнитного
материала (рис. 9.1). Такие магнитопроводы
применяются в многообмоточных трансформаторах, магнитных усилителях, в
элементах ЭВМ и других электротехнических устройствах.

На рис. 9.2 показана
более сложная магнитная цепь электромеханического устройства, подвижная часть
которого втягивается в электромагнит при постоянном (или переменном) токе в
катушке. Сила притяжения зависит от положения подвижной части магнитопровода.

На рис. 9.3 изображена
магнитная цепь, в которой магнитное поле возбуждается постоянным магнитом. Если
подвижная катушка, расположенная на ферромагнитном цилиндре, включена в цепь
постоянного тока, то на нее действует вращающий момент. Поворот катушки с током
практически не влияет на магнитное поле магнитной цепи. Такая магнитная цепь
есть, например, в измерительных приборах магнитоэлектрической системы.

Рассмотренные магнитные цепи,
как и другие возможные конструкции, можно разделить на неразветвленные
магнитные цепи (рис. 9.1 и 9.3), в которых магнитный поток в любом сечении цепи
одинаков, и разветвленные магнитные цепи (рис. 9.2), в которых магнитные потоки
в различных сечениях цепи различны. В общем случае разветвленные магнитные цепи
могут быть сложной конфигурации, например в электрических двигателях,
генераторах и других устройствах.

В большинстве случаев
магнитную цепь следует считать нелинейной, и лишь при определенных допущениях и
определенных режимах работы магнитную цепь можно считать линейной.

Источник

Закон полного тока для магнитного поля

В электрических цепях всегда присутствует магнитное поле, которое оказывает электромагнитное взаимодействие с токами этих цепей. Данный фактор учитывается при расчетах цепей, а закон полного тока для магнитного поля является инструментом для подобных вычислений.

Если поднести магнитную стрелку к проводнику, по которому течёт ток, её положение изменится. Это говорит о наличии вокруг проводника кроме электрического ещё и магнитного поля. В результате многочисленных исследований электромагнитных явлений установлено, что существует взаимное влияние полей, имеющих электрическую и магнитную природу.

Физический смысл закона

Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.

В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:

Направления векторов I1 и I2 определяется по правилу буравчика.

Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.

Упрощенный подход

Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.

Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.

Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.

На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Поле бесконечно прямого тока

Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ 2π.

Читайте также:  Нисходящий ток веществ происходит по

Из теоремы Остроградского-Гаусса вытекает формула:

Формула из теоремы Остроградского-Гаусса

Учитывая, что cos φ = 1,

Формула магнитной индукции

Формула итог

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μI, где μ = 1/c 2 ε – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Сумма токов

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

Ток в пространстве

где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:

Формула полного тока в вакауумеИллюстрация закона для вакуума Рис. 2. Иллюстрация закона для вакуума

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

Влияние среды

На результат взаимодействия магнитных потоков и постоянных токов влияет среда. Вещества обладают магнитной проницаемостью в потоке вектора индукции, что вносит коррективы на взаимодействие магнитной среды с токами проводимости. В однородной изотопной среде, где значение вектора электромагнитной индукции одинаково во всех точках, векторы B и H связаны между собой следующим соотношением:

Связь векторов b и h

где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.

Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.

Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.

Закон полного тока в веществе

Рис. 3. Закон полного тока в веществе

Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.

Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.

Торойд

В электротехнике часто приходится иметь дело с катушками разных видов и размеров. Катушка, образованная витками намотанными на сердечник тороидальной формы (в виде бублика), называется тороидом. Важными характеристиками сердечника тора являются его радиусы — внутренний (R1) и внешний (R2).

Поле внутри соленоида на расстоянии r от центра равно:

Формулы: Поле внутри соленойда

Выводы

На основании изложенного, приходим к заключению:

  1. Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
  2. Действие закона распространяется на все среды, при допустимых плотностях тока.
  3. Закон также выполняется в полях постоянных магнитов.

При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.

Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.

Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.

Источник

27)Закон полного тока в интегральной и дифференциальной формах.

Это выражение носит название закона полного тока Закон полного тока является основным законом при расчете магнитных цепей и дает возможность в некоторых случаях легко определить напряженность поля.

в интегральной форме имеет вид: и гласит о том, что линейный интеграл по замкнутому контуру l от напряженности магнитного поля равен полному току, протекающему сквозь сечение, ограниченное этим контуром.

Формула называется законом полного тока в дифференциальной форме. Ротор – это функция, характеризующая поле в рассматриваемой точке, в отношении способности к образованию вихрей.

28)Электромагнитная индукция. Основной закон электромагнитной индукции (закон Фарадея). Правило Ленца.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:m = kQ = kIt.

для электрохимического эквивалента k можно записать в виде

Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNA – постоянная Фарадея. F = eNA = 96485 Кл / моль.

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества. Закон Фарадея для электролиза приобретает вид: Явление электролиза широко применяется в современном промышленном производстве.

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока Ф , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением:

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

29)Явление самоиндукции. Индуктивность. Токи при замыкании и размыкании электрической цепи.

Явление самоиндукции заключается в появлении ЭДС индукции в самом проводнике при изменении тока в нем. Примером явления самоиндукции является опыт с двумя лампочками, подключенными параллельно через ключ к источнику тока, одна из которых подключается через катушку . При замыкании ключа лампочка 2, включенная через катушку, загорается позже лампочки 1. Это происходит потому, что после замыкания ключа ток достигает максимального значения не сразу, магнитное поле нарастающего тока породит в катушке индукционную ЭДС, которая в соответствии с правилом Ленца будет мешать нарастанию тока.

Читайте также:  Схема зарядного устройства асимметричным током для автомобильных

Для самоиндукции выполняется установленный опытным путём закон: ЭДС самоиндукции прямо пропорциональна скорости изменения тока в проводнике.

Коэффициент пропорциональности L называют индуктивность. Индуктивность – это величина, равная ЭДС самоиндукции при скорости изменения тока в проводнике 1 А/с.[L]= генри (Гн). 1 Гн=1В*с/А. 1 генри – это индуктивность такого проводника, в котором возникает ЭДС самоиндукции 1 вольт при скорости изменения тока 1 А/с.

Индуктивность характеризует магнитные свойства электрической цепи (проводника), зависит от магнитной проницаемости среды сердечника, размеров и формы катушки и числа витков в ней.

Источник



Закон полного тока простыми словами

Какую зависимость устанавливает закон полного тока для магнитного поля. Формулировка закона простым языком и все необходимые формулы для расчета.

Знакомый многим предмет под названием «Электротехника» содержит в своей программе ряд основополагающих законов, определяющих принципы физического взаимодействия для магнитного поля. Они распространяют свое действие на различные элементы электротехнических устройств, а также на входящие в их состав структуры и среды. Физика происходящих в них процессов касается таких базовых понятий, как потоки электричества и поля. Закон полного тока устанавливает зависимость между перемещением электрических зарядов и создаваемым им магнитным полем (точнее – его напряженностью). Современная наука утверждает, что его применение распространяется практически на все среды.

Суть закона

Рассматриваемый закон, применимый в магнитных цепях, определяет следующую количественную связь между входящими в него составляющими. Циркуляция вектора магнитного поля по замкнутому контуру пропорциональна сумме токов, пронизывающих его. Чтобы понять физический смысл закона полного тока – потребуется ознакомиться с графическим представлением описываемых им процессов.

Из рисунка видно, что около двух проводников с протекающими по ним токами I1 и I2 образуется поле, ограниченное контуром L. Оно вводится как мысленно представляемая замкнутая фигура, плоскость которой пронизывают проводники с движущимися зарядами. Простыми словами этот закон можно выразить так. При наличии нескольких потоков электричества через мысленное представляемую поверхность, охватываемую контуром L, в ее пределах формируется магнитное поле с заданным распределением напряженности.

За положительное направление движения вектора в соответствии с законом для контура магнитной цепи выбирается ход часовой стрелки. Оно также является мысленно представляемым.

Такое определение создаваемого токами вихревого поля предполагает, что направление каждого из токов может быть произвольным.

Для справки! Вводимую полевую структуру и описывающий ее аппарат следует отличать от циркуляции электростатического вектора «Е», который при обходе контура всегда равен нулю. Вследствие этого такое поле относится к потенциальным структурам. Циркуляция же вектора «В» магнитного поля никогда не бывает нулевой. Именно поэтому оно называется «вихревым».

Основные понятия

В соответствии с рассматриваемым законом для расчета магнитных полей применяется следующий упрощенный подход. Полный ток представляется в виде суммы нескольких составляющих, протекающих через поверхность, охватываемую замкнутым контуром L. Теоретические выкладки могут быть представлены следующим образом:

  1. Полный электрический поток, пронизывающих конур Σ I – это векторная сумма I1 и I2.
  2. В рассматриваемом примере для его определения используется формула:
    ΣI = I1- I2 (минус перед вторым слагаемым означает, что направления токов противоположны).
  3. Они, в свою очередь, определяются по известному в электротехнике закону (правилу) буравчика.

Напряженность магнитного поля вдоль контура вычисляется на основании полученных выкладок по специальным методикам. Для ее нахождения придется проинтегрировать этот параметр по L, используя уравнение Максвелла, представленное в одной из форм.Оно может быть применено и в дифференциальной форме, но это несколько усложнит выкладки.

Влияние среды

Рассмотренные отношения для закона токов и полей, действующих не в вакууме, а в магнитной среде, приобретают несколько иной вид. В этом случае помимо основных токовых составляющих вводится понятие микроскопических токов, возникающих в магнетике, например, или в любом подобном ему материале.

Нужное соотношение в полном виде выводится из теоремы о векторной циркуляции магнитной индукции B. Простым языком она выражается в следующем виде. Суммарное значение вектора B при интегрировании по выбранному контуру равно сумме охватываемых им макро токов, умноженной на коэффициент магнитной постоянной.

В итоге формула для «В» в веществе определяется выражением:

Интеграл от B по dL = интегралу от Bl по dL= m(I+I1)

где: dL – дискретный элемент контура, направленный вдоль его обхода, Вl– составляющая в направлении касательной в произвольной точке,бI и I1 – ток проводимости и микроскопический (молекулярный) ток.

Если поле действует в среде, состоящей из произвольных материалов – должны учитываться микроскопические токи, характерные именно для этих структур.

Эти выкладки также верны для поля, создаваемого в соленоиде или в любой другой среде, обладающей конечной магнитной проницаемостью.

Для справки

В самой полной и объемлющей системе измерений СГС напряженность магнитного поля представляется в эрстедах (Э). В другой действующей системе (СИ) она выражается в амперах на один метр (А/метр). Сегодня эрстед постепенно вытесняется более удобной в работе единицей – ампером на метр. При переводе результатов измерений или расчетов из СИ в СГС используется следующее соотношение:

1 Э = 1000/(4π) А/м ≈ 79,5775 Ампер/метр.

В заключительной части обзора отметим, что независимо от того, какая используется формулировка закона полных токов – суть его остается неизменной. Своими словами это можно представить так: он выражает отношения между токами, пронизывающими данный контур и создаваемыми в веществе магнитными полями.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Источник