Меню

Понятие электрического тока реферат

Электрический ток в различных сферах

Автор работы: Пользователь скрыл имя, 28 Мая 2013 в 12:36, реферат

Краткое описание

Электрический ток — направленное движение заряженных частиц под воздействием электрического поля.
Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки.
В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга.

Содержание

Введение
Электрический ток в жидкостях
Электрический ток в газах
Электрический ток в вакууме
Электрический ток в металлах

Вложенные файлы: 1 файл

Реферат — Электрический ток в различных сферах.docx

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ КЕМЕРОВСКОЙ ОБЛАСТИ

ГБОУ СПО ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ

На тему: «Электрический ток в различных сферах»

Специальность: 100122 Прикладная эстетика

Выполнила студентка гр. 252

  1. Электрический ток в жидкостях
  2. Электрический ток в газах
  3. Электрический ток в вакууме
  4. Электрический ток в металлах
  1. http://ru.wikipedia.org/wiki/% DD%EB%E5%EA%F2%F0%E8%F7%E5%F1% EA%E8%E9_%F2%EE%EA
  2. http://electricalschool.info/ main/393-jelektricheskijj-tok- v-zhidkostjakh-i.html
  3. http://sfiz.ru/page.php?id=67
  4. http://sfiz.ru/page.php?id=69
  5. http://www.tostudent.ru/ electro/61-tokmetall
  6. http://rudocs.exdat.com/docs/ index-1183.html

Электрический ток — направленное движение заряженных частиц под воздействием электрического поля.

Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы ( катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

1. Электрический ток в жидкостях

В металлическом проводнике электрический ток образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода. К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода. К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Проводники второго рода называются электролитами, а явление, происходящее в электролите при прохождении через него электрического тока, — электролизом.

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом, а другая, соединенная с отрицательным полюсом,— катодом.

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами. При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частицами вещества — ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

Это явление, названное гальванопластикой, находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

2. Электрический ток в газах

В газах существуют несамостоятельные и самостоятельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой.

Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые провода воздушных линий, будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются, т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа — явление временное, зависящее от действия внешних причин.

Однако есть и другой вид разряда, называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом «темный покой достаточно ярко освещен быть может». Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд.

Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

3. Электрический ток в вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает — нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп. Простейшая из них -вакуумный диод — содержит два электрода. Один — в виде спирали из тугоплавкого материала, например вольфрама или молибдена, накаливаемый током, называется катодом. Второй — холодный электрод, собирающий термоэлектроны, называется анодом и чаще всего имеет форму цилиндра, внутри которого расположен накаливаемый катод.

Вакуум (от лат. vacuum – пустота) – состояние газа при давлении, меньшем атмосферного. Это понятие применяется к газу в замкнутом сосуде или в сосуде, из которого откачивают газ, а часто и к газу в свободном пространстве, например к космосу. Физической характеристикой вакуума есть соотношение между длиной свободного пробега молекул и размером сосуда, между электродами прибора и т.д.

Молекулы воздуха, двигаясь хаотически, часто сталкиваются между собой и со стенками сосуда. Между такими столкновениями молекулы пролетают определенные расстояния, которые называются длиной свободного пробега молекул. Понятно, что при откачивании воздуха концентрация молекул (их количество в единице объема) уменьшается, а длина свободного пробега – увеличивается. И вот наступает момент, когда длина свободного пробега становится равной размерам сосуда: молекула движется от стенки к стенке сосуда, практически не встречаясь с другими молекулами. Вот тогда-то и считают, что в сосуде создан вакуум, хотя в нем еще может быть много молекул. Понятно, что в меньших по размерам сосудах вакуум создается при больших давлениях газа в них, чем в больших сосудах. Если продолжать откачивание воздуха из сосуда, то говорят, что в нем создается более глубокий вакуум. При глубоком вакууме молекула может много раз пролететь от стенки к стенке, прежде чем встретится с другой молекулой. Откачать все молекулы из сосуда практически невозможно. Где берутся свободные носители зарядов в вакууме? Если в сосуде создан вакуум, то в нем все же есть немало молекул, некоторые из них могут быть и ионизированы. Но заряженных частичек в таком сосуде для выявления заметного тока мало.

Читайте также:  Как замерить сопротивление тока мультиметром

4. Электрический ток в металлах

Электрический ток присутствует везде, он течет: в нашем организме, передавая нервные импульсы, в атмосфере, вызывая разряды молнии и тому подобное, и, конечно же, в электрических приборах, протекая по металлическим проводам.

Электрический ток в металлах — это движение отрицательно заряженных свободных электронов под действием электрического поля в пространстве между положительно заряженными ионами упорядоченной кристаллической решетки металла.

В начале ХХ века немецким физиком П. Друде (1863-1906) была создана классическая электронная теория проводимости металлов, получившая дальнейшее развитие в работах голландского физика-теоретика Г.А. Лоренца (1853-1928). Её основные положения заключаются в следующем.
С точки зрения электронной теории высокая электрическая проводимость в металлах (электропроводимость металлов) объясняется наличием огромного числа носителей тока – электронов проводимости, перемещающихся по всему объёму проводника. П. Друде предложил, что электроны проводимости в металле можно рассматривать как электронный газ, обладающий свойствами идеального одноатомного газа. При своём движении электроны проводимости сталкиваются с ионами кристаллической решётки металла.
Тепловое движение электронов вследствие своей хаотичности не может привести к возникновению электрического тока.
Под действием внешнего электрического поля в металлическом проводнике возникает упорядоченное движение электронов, т.е. возникает электрический ток.
Средняя скорость упорядоченного движения электронов, обуславливающая наличие электрического тока в проводнике, чрезвычайно мала по сравнению со средней скоростью их теплового движения при обычных температурах. Небольшое значение средней скорости объясняется весьма частыми столкновениями электронов с ионами кристаллической решётки.
Экспериментальное обоснование классической электронной теории. В опытах, выполненных Н.Л. Мандельштамом и Н.Д. Палалекси, а также Стюартом и Толменом, было экспериментально подтверждено, что проводимость металлов обусловлена движением свободных электронов. На катушку был намотан медный проводник, присоединённый к баллистическому гальванометру. Катушку приводили в быстрое вращение, а затем резко останавливали. В момент торможения гальванометр показывал кратковременный ток, направление которого свидетельствовало, что он создаётся движением отрицательно заряженных частиц. Эти частицы, были свободными, при торможении кристаллической решётки, массы движутся по инерции и создают ток. Определяя с помощью манометра заряд, проходящий через него за всё время существования тока в цепи. Стюарт и Толмен нашли удельный заряд носителей тока в металле, т.е. отношение заряда частиц к массе. Он равный 1,8 · 10 Кл/кг. Это отношение в пределах ошибки совпадает со значением е/т для электронов, которое было найдено по отклонению пучка электронов в магнитном поле. Таким образом, электрический ток в металлах представляет собою упорядоченное, направленное движение свободных электронов, которое накладывается на их беспорядочное тепловое движение при включении электрического поля в проводнике.

Источник

Понятие электрического тока реферат

Вы будете перенаправлены на Автор24

Электрический ток образуется в веществе только при условии наличия свободных заряженных частиц. Заряд может находиться в среде изначально или же формироваться при условии содействия внешних факторов (температуры, электромагнитного поля, ионизаторов). Движение заряженных частиц хаотичны при условии отсутствия электромагнитного поля, а при подключении к двум точкам вещества, разности потенциалов превращаются в направленные — от одного вещества к другому.

Понятие, сущность и проявления электрического тока

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • В газах – ионы и электроны,
  • В металлах – электроны,
  • В электролитах – анионы и катионы,
  • В вакууме – электроны (при определенных условиях),
  • В полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Готовые работы на аналогичную тему

Часто используют такое определение понятия «электрический ток». Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Электрический ток - упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Электрический ток — упорядоченное движение заряженных частиц. Автор24 — интернет-биржа студенческих работ

Классификация видов электрического тока

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока. Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов. Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжению. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Вообще работы Фарадея на разные темы, связанные с электричеством, отличаются глубиной и масштабностью. Он провел большое число опытов и выступил с огромным количеством докладов.

Кратко упомянем, что также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Источник

ПОНЯТИЕ ОБ ЭЛЕКТРИЧЕСКОМ ТОКЕ

Электрический ток – это направленное движение электрических зарядов по проводнику

Направлением электрического тока следовало бы считать направление движения свободных электронов по металлическому проводнику, однако за него условно принято направление движения положительных зарядов в проводнике. Эта условность сложилась исторически и в настоящее время сохранила свою силу в электротехнике.

Читайте также:  Как ток проходит через человека при ударе

Практически электрический ток получают от специальных источников: гальванических элементов, аккумуляторов, генераторов.

Электрический ток непосредственно наблюдать нельзя. О прохождении тока можно судить только по тем действиям, которые он оказывает

Запомните

Признаки, по которым судят о наличии электрического тока:

■ проводник, по которому проходит электрический ток, нагревается;

■ электрический ток, проходя по проводнику, создает вокруг него

■ ток, проходя через растворы солей, щелочей, кислот, а также че­

рез расплавленные соли, разлагает их на составные части.

Если через поперечное сечение проводника проходит qКл (кулонов) электричества за t с, то количество электричества, прошедшего через поперечное сечение проводника в течение 1 с, называетсявеличиной тока и обозначается буквойI:

Единицей измерения тока является ампер (А), определяемый как количество электричества в 1 Кл, прошедшего через поперечное сечение проводника в 1 с:

Ток в электрической цепи измеряется амперметром (рис. .3, а). Амперметр включается в электрическую цепь последовательно (рис. 3, б). Ток, не изменяющийся по величине и направлению, называется постоянным током. Постоянный ток дают гальванические элементы, аккумуляторы, генераторы постоянного тока.

Рис.3.Амперметр: а-внешний вид б- схема включения

1. От каких приборов получают электрический ток?

2. По каким признакам судят о наличии электрического тока?

3. Как включается амперметр в электрическую цепь?

ПРОВОДНИКИ И ДИЭЛЕКТРИКИ

Перемещение электронов в определенном направлении и возникновение электрического тока возможно не во всех материалах. Например, в фарфоре, резине, мраморе, слюде свободных электронов практически нет, а все имеющиеся электроны прочно связаны с ядром. Поэтому электрические поля зарядов не могут вызвать перемещения электронов в определенном направлении и по таким материалам электрический ток не проходит. Эти материалы называются диэлектриками, или изоляторами.

К диэлектрикам относятся воздух, газ, слюда, мрамор, пластмасса, лаки и эмали, электрофарфор, лакоткани, стекловолокно и многие другие материалы.

В металлах, наоборот, много свободных электронов, и под действием сил электрического поля происходит перемещение электрических зарядов. Поэтому по металлу будет протекать электрический ток.

Материалы, проводящие электрический ток, называются проводниками. Впервые описание проводников было приведено еще в XIV в. К ним относятся металлы, растворы солей, кислот и щелочей.

1. Какие материалы называются диэлектриками?

2. Какие материалы, проводящие электрический ток, вы знаете?

ЭЛЕКТРИЧЕСКАЯ ЕМКОСТЬ.

КОНДЕНСАТОРЫ

Электрическая емкостьпроводника или устройства, состоящего из двух проводников, разделенных диэлектриком, характеризует их способность накапливать электрические заряды.

Рис.4.Кондесаторы а)плоский б) цилиндрический

В технике широко применяют конденсаторы — устройства, которые при сравнительно малых размерах способны накапливать значительные электрические заряды. Конденсаторы имеют боль­шую электрическую емкость и используются в энергетических установках, устройствах электроники, автоматики и др. Простейший конденсатор состоит из двух близко расположенных металлических пластин (обкладок), между которыми находится диэлектрик (воздух, слюда, фарфор, бумага и т.д.). Для увеличения площади электродов конденсатора его обычно делают многослойным.

Схематический вид плоского конденсатора приведен на рис..4,а а цилиндрического — на рис.4,б. Различные виды конденсаторов представлены на рис.5.

.Рис.5 .Различные виды конденсаторов

Электрическая емкость конденсатора определяется отношением величины заряда на его пластинах к напряжению между ними:

Электрическая емкость измеряется в фарадах (Ф). Емкость конденсатора равна 1 Ф, если увеличение его заряда на 1 Кл электричества вызывает повышение напряжения между его обкладками на 1 В (вольт):

Фарад — очень крупная единица емкости, которая практически не применяется. Обычно используют более мелкие единицы емкости — микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

Опытным путем установлено, что емкость конденсатора прямо пропорциональна электрической проницаемости диэлектрика, находящегося между пластинами конденсатора, а также зависит от расстояния между пластинами. Конденсатор, у которого пластины находятся на большом расстоянии друт от друга, обладает меньшей емкостью.

Пластины конденсатора, которые имеют большую площадь, заряжаются большим количеством электричества и соответственно обладают большей емкостью. Все сказанное позволяет записать следующую формулу для определения емкости плоского конденсатора, Ф:

где — относительная электрическая проницаемость вакуума; его относительная электрическая проницаемость диэлектрика; S— площадь одной из пластин конденсатора, d — расстояние между пластинами, м.

Пример. 3. Конденсатор имеет две пластины. Площадь каждой пластины составляет 15см2. Между пластинами помещен диэлектрик — пропарафинированная бумага толщиной 0,02 см. Определить емкость этого конденсатора.

Решение

Следует, что диэлектрическая проницаемость пропарафинированной бумаги = 2,2. Емкость конденсатора

1 . Что называется электрической емкостью конденсатора?

2. От каких параметров зависит емкость конденсатора?

3. Как диэлектрическая проницаемость материала влияет на размеры конденсатора?

СОЕДИНЕНИЕ КОНДЕНСАТОРОВ

На практике используют три вида соединений конденсаторов: последовательное ,параллельное и смешанное. Обозначения конденсаторов на электрических схемах даны на рис..6.

Последовательное соединение конденсаторов. При последовательном соединении конденсаторов (рис.7) правая пластина первого конденсатора соединяется с левой пластиной второго, правая пластина второго — с левой пластиной третьего и т. д. В этом случае их эквивалентная (общая) емкость уменьшается. Так происходит

потому, что общая толщина диэлектрика увеличивается, что при­

водит к уменьшению общей емкости. Эквивалентную емкость при

последовательном соединении конденсаторов определяют по формуле

Если последовательно включено несколько одинаковых конденсаторов, то их эквивалентную емкость вычисляют по формуле

на электрических схемах: а)конденсатор постоянный емкости

б) поляризованный конденсатор в) подстроечный конденсатор

Рис.7. Схема последовательного соединения конденсаторов.

где С — емкость одного конденсатора, Ф; n— число последовательно включенных конденсаторов.

Общее напряжение, приложенное к последовательно соединенным конденсаторам, равно сумме напряжений на отдельных конденсаторах

Запомните

■ Последовательное соединение конденсаторов применяется

в том случае, если напряжение в цепи больше рабочего напряжения одного конденсатора.

■ При последовательном соединении эквивалентная емкость

меньше самой малой из соединенных емкостей.

Например, если напряжение в цепи равен 600 В, а в распоряжении имеются три одинаковых конденсатора, причем рабочее напряжение каждого из них составляет 200В, то их можно включить в цепь, соединив предварительно последовательно. Это дает возможность, даже не рассчитывая общую емкость, приблизительно

оценить ее величину. В частности, если соединены последовательно три конденсатора емкостью 0,1, 3 и 10 мкФ, то заранее можно сказать, что их общая емкость будет меньше 0,1 мкФ. Подсчет по формуле дает значение общей емкости 0,096 мкФ.

Параллельное соединение конденсаторов. Схема параллельного соединения конденсаторов приведена на рис..8.

Эквивалентную емкость при параллельном соединении конденсаторов определяют

+ +…

т. е. эквивалентная емкость параллельно соединенных конденсаторов равна сумме емкостей всех включенных конденсаторов. Это объясняется тем, что при параллельном соединении конденсаторов происходит как бы увеличение площади пластин, что приводит к увеличению емкости.

Рис.8.Схема параллельного соединения конденсаторов

Если параллельно включено п одинаковых конденсаторов, то эквивалентную емкость можно рассчитать по следующей формуле:

Напряжение на каждом из параллельно включенных конденсаторов равно напряжению цепи

Запомните

К параллельно соединенным конденсаторам можно подвести напряжение, не превышающее рабочее напряжение каждого из них.

Смешанное соединение конденсаторов. Такое соединение конденсаторов представляет собой совокупность последовательного и параллельного соединений (рис. 9). Его применяют в том случае, когда необходимо использовать положительные свойства последовательного и параллельного соединений конденсаторов.

Пример.4. В цепь напряжением 600 В необходимо включить емкость 2 мкФ. В распоряжении имеются четыре конденсатора емкостью 2 мкФ каждый. Рабочее напряжение каждого из них равно 300 В. Как нужно включить конденсаторы для включения их в цепь?

Решение

Рабочее напряжение конденсаторов меньше напряжения цепи в два раза, поэтому конденсаторы необходимо соединить последовательно (см. рис.9). При этом напряжение на каждом конденсаторе будет составлять 300 В, а эквивалентная емкость.

Чтобы получить необходимую мощность 2 мкФ, параллельно конденсаторам и включим еще два последовательно соединенных конденсатора и. Эквивалентную емкость конденсаторов и определим по формуле

Емкости и соединены параллельно, поэтому эквивалентная емкость четырех конденсаторов составит:

Рис.9.Схема смешаного соединения конденсаторов

=2мкФ

Соответственно и напряжение на каждом конденсаторе будет равно 300 В.

1. Каковы единицы измерения электрической емкости и их соотношение?

2. Как влияет диэлектрик на емкость конденсатора?

3. При каком соединении конденсаторов общая емкость уменьшается?

4. В каких случаях применяется параллельное соединение конденсаторов?

Источник



Электрический ток

Автор работы: Пользователь скрыл имя, 20 Мая 2013 в 09:37, реферат

Краткое описание

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика. В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга.

Содержание работы
Содержимое работы — 1 файл

ONI.docx

Основные характеристики………………………………………… …….3

Законы постоянного тока…………………………………… …………. 6

Измерение силы тока с помощью приборов………………………….. ..8

Источники постоянного тока…………………………………… ……….9

Список использованных источников…………………………………..12

Электри́ческий ток — направленное движение заряженных частиц под воздействиемэлектрического поля [1] . Такими частицами могут являться: в проводниках — электроны, вэлектролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки(электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Читайте также:  Номинальный ток дифавтомата что это

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также дляэлектрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

1. Сила тока — I, единица измерения — 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

I = lim Dq/Dt , (*)
Dt — 0

т.е. I = q’, где q’ — производная от заряда по времени.

2. Плотность тока — j, единица измерения — 1 А/м 2 .

Плотностью тока называется величина, равная силе тока, протека-ющего через единичное поперечное сечение проводника:

3. Электродвижущая сила источника тока — э.д.с. ( e ), единица измерения — 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

4. Сопротивление проводника — R, единица измерения — 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

l — длина проводника,
S — площадь поперечного сечения,
r — коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

Коэффициент a называется температурным коэффициентом сопротив-ления:

Для химически чистых металлов a > 0 и равно 1/273 К -1 . Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимо сти, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s

5. Напряжение — U , единица измерения — 1 В.

Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

2. Законы постоянного тока

Закон Ома для участка цепи. Сопротивление проводников.
Последовательное и параллельное соединение проводников.
Электродвижущая сила. Закон Ома для полной цепи.
Работа и мощность тока.

Всякое движение электрических зарядов называют электрическим током. В металлах могут свободно перемещаться электроны, в проводящих растворах — ионы, в газах могут существовать в подвижном состоянии и электроны, и ионы.

Условно за направление тока считают направление движения положительных частиц, поэтому в металлах это направление противоположно направлению движения электронов.

Плотность тока — величина заряда, проходящего в единицу времени через единицу поверхности, перпендикулярной к линиям тока. Эта величина обозначается j и рассчитывается следующим образом:

Здесь n — концентация заряженных частиц, e — заряд каждой из частиц, v — их скорость.

Сила тока i — величина заряда, проходящего в единицу времени через полное сечение проводника. Если за время dt через полное сечение проводника прошел заряд dq, то

По другому, сила тока находится интегрированием плотности тока по всей поверхности любого сечения проводника. Единица измерения силы тока — Ампер. Если состояние проводника (его температура и др.) стабильно, то между приложенным к его концам напряжением и возникающим при этом током существует однозначная связь. Она называется Закон Ома и записывается так:

R — электрическое сопротивление проводника, зависящее от рода вещества и от его геометрических размеров. Единичным сопротивлением обладает проводник, в котором возникает ток 1 А при напряжении 1 В. Эта единица сопротивления называется Ом.

Закон Ома в дифференциальной форме:

где j — плотность тока, Е — напряженность поля, s — проводимость. В этой записи закон Ома содержит величины, характеризующие состояние поля в одной и той же точке.

Различают последовательное и параллельное соединения проводников.
При последовательном соединении ток, протекающий по всем участкам цепи, одинаков, а напряжение на концах цепи складывается как алгебраическая сумма напряжений на всех участках.

При параллельном соединении проводников постоянным остается напряжение, а ток складывается из суммы токов, протекающих по всем ветвям. В этом случае складываются величины, обратные сопротивлению:

Для получения постоянного тока на заряды в электрической цепи должны действовать силы, отличные от сил электростатического поля; их называют сторонними силами.

Если рассматривать полную электрическую цепь, необходимо включить в нее действие этих сторонних сил и внутренне сопротивление источника тока r. В этом случае закон Ома для полной цепи примет вид:

Е — электродвижущая сила (ЭДС) источника. Она измеряется в тех же единицах, что и напряжение. Величину (R+r) называют иногда полным сопротивлением цепи.

Сформулируем правила Киркгофа:
Первое правило: алгебраическая сумма сил токов в участках цепи, сходящихся в одной точке разветвления, равна нулю.

Второе правило: для любого замкнутого контура сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

Мощность тока рассчитывается по формуле

Закон Джоуля-Ленца. Работа электрического тока (тепловое действие тока) A=Q=UIt=I 2 Rt=U 2 t/R.

3. Измерение силы тока с помощью приборов

На практике для измерения силы тока используется специальный прибор, его называют амперметр (для приборов, которые предназначены для измерения в проводниках малых токов, используются более чувствительные приборы, такие как миллиамперметры, микроамперметры, гальванометры).

Такие приборы подключают последовательно к тому участку цепи, в котором необходимо измерить силу тока. Как уже отмечалось выше, за единицу силы тока принят 1 ампер (1 А). Что же представляет собой эта единица измерения?

За 1 ампер принимается сила такого тока, который проходя по двум прямым параллельным проводникам, которые имеют бесконечную длину и малый диаметр и расположены в вакууме в 1 метре друг от друга, вызывает силу взаимодействия на участке проводника в 1 метр, равную 0,0000002 H.

Мы уже привыкли, что единицы измерения тех или иных физических величин получили свои названия в честь великих ученых, и Ампер не исключение. Ему присвоено имя французского физика и математика Андре-Мари Ампера.

Этот ученый немало потрудился на благо науки, к примеру, именно он ввел такие понятия, как электродинамика, электростатика, соленоид, напряжение, ЭДС, гальванометр, электрический ток и т. п. Кроме того Ампер открыл такое явление, как механическое взаимодействие между проводниками с током, а также правило определения направления в нем электрического тока. Вот собственно и все.

4.Источники постоянного тока

Простейшим источником постоянного тока является химический источник (гальванический элемент или аккумулятор), поскольку полярность такого источника не может самопроизвольно измениться.

Для получения постоянного тока используют также электрические машины — генераторы постоянного тока.

В электронной аппаратуре, питающейся от сети переменного тока, для получения пульсирующего тока используют выпрямитель. Далее для уменьшения пульсаций может быть использован сглаживающий фильтр и, при необходимости, стабилизатор напряжения.

Усилитель постоянного тока (УПТ) — электронный усилитель, рабочий диапазон частот которого включает нулевую частоту (постоянный ток).

На верхнюю границу частотного диапазона усилителя никаких ограничений не накладывается, то есть она может находиться в области очень высоких частот. Таким образом, термин УПТ можно применять к любому усилителю, способному работать на постоянном токе.

В подавляющем большинстве случаев УПТ является усилителем не тока, как следует из названия, а напряжения. Путаница обусловлена тем, что термин ток употребляется для описания электрических процессов вообще.

Машины постоянного тока

Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами и вращающегося ротора (якоря) с коллектором. Статор является источником магнитного поля и механическим остовом машины, якорь- часть машины, в обмотке которой индуцируется э. д. с.

На одном валу с якорем жестко закрепляется коллектор, электрически соединенный с его обмоткой. Коллектор — характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован.

Принцип действия машин постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле машины создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами в машинах малой мощности. Его силовые линии замыкаются через стальные станину, сердечники полюсов и сердечник якоря, дважды преодолевая на своем пути воздушный зазор между ними. Магнитная цепь четырехполюсной машины постоянного тока разветвленная, симметричная. Плоскость, проходящую через ось машины под углом а, при котором она перпендикулярна к силовым линиям, называют геометрической нейтралью (при а. = 0 и 772).

Существует два режима работы эл. двигателей

а: режим генератора
б: режим двигателя

В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится постоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем, эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подключить приемник, то в нем установится постоянный ток I.

Источник