Меню

Порядок получения переменного тока

§46. Получение переменного тока

В промышленности в основном применяют синусоидальный переменный ток, который в отличие от постоянного каждое мгновение изменяет свое значение и периодически направление. Для получения такого тока используют источники электрической энергии, создающие переменную э. д. с, периодически изменяющуюся по величине и направлению; такие источники называются генераторами переменного тока.

Принцип получения переменного тока. Простейшим генератором переменного тока может служить виток, вращающийся в равномерном магнитном поле (рис. 168, а). Пользуясь правилом правой руки, легко определить, что в процессе вращения витка направление э. д.с. е, индуцированной в рабочих участках 1 и 2 витка, непрерывно изменяется (показано стрелками), следовательно, изменяется и направление проходящего по замкнутой цепи тока i.

По закону электромагнитной индукции э. д. с, индуцируемая в витке при вращении его с окружной скоростью ? в магнитном поле с индукцией В,

2l — длина двух рабочих частей витка, находящихся в магнитном поле;

? — угол между направлением силовых магнитных линий и направлением движения витка в рассматриваемый момент времени (направлением вектора скорости ?).

При вращении витка с угловой скоростью ? угол ? = ?t, следовательно,

Переменный угол ? t называется фазой э. д. с. Величина 2lB ? представляет собой максимальное значение э. д. с. е, которое она принимает при ?t = 90° (когда плоскость витка перпендикулярна силовым магнитным линиям). Обозначив его Eт получим:

Полученная зависимость изменения э. д. с. е от угла ?t или от времени t графически изображается синусоидой (рис. 168,б). Э. д. с, токи и напряжения, изменяющие свои значения и направления по закону синусоиды, называются синусоидальными. Ось, по которой откладывают углы ? t, можно рассматривать как ось времени t.

Рассмотрим несколько отдельных положений витка. В момент времени, соответствующий углу ?t1 (см. рис. 168, а), когда виток находится в горизонтальном положении, его рабочие участки как бы скользят вдоль силовых магнитных линий, не пересекая их; поэтому в этот момент э. д. с. в них не индуцируется (точка 1 на рис. 168,б). При дальнейшем повороте витка стороны его начнут пересекать магнитные силовые линии. По мере увеличения угла поворота увеличивается и число силовых линий, пересекаемых сторонами витка в единицу времени, и соответственно возрастает индуцированная в витке э. д. с е.

В момент времени, соответствующий углу ?t2, виток пересекает наибольшее число силовых магнитных линий, так как его рабочие участки 1 и 2 движутся перпендикулярно силовым линиям магнитного поля; в этот момент э. д. с. е достигает своего максимального значения Ет (точка 2 на графике). При дальнейшем вращении витка число пересекаемых силовых линий уменьшается и соответственно уменьшается индуцированная в витке э. д. с. В момент времени, соответствующий углу рабочие участки витка опять как бы скользят вдоль магнитных силовых линий, в результате чего э. д. с. е будет равна нулю (точка 3). Затем рабочие участки 1 и 2 витка вновь начинают пересекать магнитные силовые линии, но уже в другом направлении, поэтому в витке появляется э. д. с. противоположного направления. В момент времени, соответствующий углу ?t4. при вертикальном расположении витка э. д. с. в достигает максимального значения — Ет (точка 4), затем она уменьшается, и в момент времени, соответствующий ?t5, снова становится равной нулю (точка 5). При дальнейшем движении витка с каждым

Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

Рис. 168. Индуцирование синусоидальной э. д. с. (а) и кривая ее изменения (б)

новым оборотом описанный выше процесс индуцирования э. д. с. будет повторяться.

В современных генераторах переменного тока магниты или электромагниты, создающие магнитное поле, обычно располагаются на вращающейся части машины — роторе, а витки, в которых индуцируется переменная э. д. с,— на неподвижной части генератора — статоре. Однако с точки зрения принципа действия генератора переменного тока безразлично, на какой части машины — роторе или статоре — расположены витки, в которых индуцируется переменная э. д. с.

Работа приемников электрической энергии при переменном токе. Если подключить к генератору переменного тока электрическую лампу (см. рис. 168, а), то нить ее будет периодически накаляться и остывать. Однако если частота изменений переменного тока достаточно велика, то нить лампы не будет успевать охлаждаться и глаз человека не будет улавливать изменений ее накала. Такие же условия имеют место и при работе электродвигателей переменного тока; такой двигатель при работе получает от источника импульсы переменного тока, следующие один за другим с большой частотой, и его ротор будет вращаться с постоянной частотой.

Читайте также:  Двое детей погибли от тока

Источник

Получение переменного тока

Дата публикации: 19 марта 2015 .
Категория: Статьи.

Пусть имеется однородное магнитное поле, образованное между полюсами NS электромагнита (рисунок 1, а).

Рисунок 1. Принцип получения переменного тока
а – вращение проводника в однородном магнитном поле; б – график изменения переменного тока

Внутри поля под действием посторонней силы вращается по окружности в сторону движения часовой стрелки металлический прямолинейный проводник. Как известно, пересечение проводником магнитных линий приведет к появлению в проводнике индуктированной электродвижущей силы (ЭДС). Величина этой ЭДС, как было указано в статье «Величина и направление ЭДС индукции», зависит от величины магнитной индукции B, активной длины проводника l, скорости пересечения проводником магнитных линий v и синуса угла α между направлением движения проводника и направлением магнитного поля.

Разложим окружную скорость v на две составляющие – нормальную и тангенциальную по отношению к направлению магнитной индукции B, как было показано в вышеуказанной статье. Нормальная составляющая скорости vn обусловливает наводимую ЭДС индукции и равна:

Тангенциальная составляющая скорости vt не принимает участия в создании индуктированной ЭДС и равна:

при α = 90° нормальная скорость

то есть в этом случае нормальная составляющая скорости имеет максимальное значение. Такое же значение имеет в этот момент величина индуктированной ЭДС в проводнике:

откуда общее выражение для ЭДС в проводнике будет:

При движении проводник будет занимать различные положения. На чертеже положения проводника даны через каждые 45° угла поворота. Рассматривая отдельные положения проводника, мы видим, что угол пересечения α меняется и, кроме того, при переходе проводника через нейтральную линию направление индуктированной ЭДС, определяемое по правилу правой руки, также меняется. Для наглядности составим таблицу зависимости величины и направления ЭДС (пропорциональной sin α) от положения проводника и угла между векторами индукции и скорости вращения проводника (таблица 1).

Зависимость величины и направления ЭДС от положения проводника

Положение проводника Угол α между векторами индукции B и скорости v Sin α Направление ЭДС в проводнике
1
2
3
4
5
6
7
8
9 или 1
0
45
90
135
180
225
270
315
360
0
0,707
1
0,707
0
– 0,707
– 1
– 0,707

К нам
К нам
К нам

От нас
От нас
От нас

Из таблицы видно, что за один полный оборот проводника ЭДС в нем сначала увеличивается от нуля до максимального значения, затем уменьшается до нуля и, изменив свое направление, вновь увеличивается до максимального значения и вновь уменьшается до нуля. При дальнейшем движении проводника изменения ЭДС будут повторяться.

Для наглядного представления о ходе изменения индуктированной ЭДС в проводнике воспользуемся графическим методом. Проведем две взаимно перпендикулярные оси (рисунок 1, б). На горизонтальной оси в одном масштабе отложим углы поворота проводника, а на вертикальной в другом масштабе – величину ЭДС, индуктированную в проводнике в каждый момент времени. Если ЭДС, индуктированную в проводнике при прохождении его под южным полюсом, считать положительной и откладывать от горизонтальной оси вверх, то ЭДС индуктированную в проводнике при прохождении его под северным полюсом, следует считать отрицательной и откладывать от горизонтальной оси вниз. Проведя затем через концы отрезков, изображающих в масштабе величины ЭДС, непрерывную линию, получим кривую, называемую синусоидой. При помощи кривой мы можем легко определить ЭДС в любой момент времени. Для этого на горизонтальной оси откладываем интересующий нас угол поворота проводника от начального положения. Затем от этой точки восстанавливаем перпендикуляр. Отрезок, заключенный между точками пересечения перпендикуляра с кривой и горизонтальной осью, будет в масштабе выражать величину индуктированной ЭДС в проводнике в этот момент времени.

В нашем примере проводник вращается в однородном магнитном поле. В проводнике индуктировалась ЭДС, изменяющаяся по закону синуса. Такая ЭДС называется синусоидальной.
В дальнейших статьях мы увидим, что электротехника предпочитает пользоваться переменными величинами, изменяющимися по синусоидальному закону.

Рассмотрим принцип получения синусоидальной ЭДС. Устройство, показанное на рисунке 2, позволяет снимать и отводить во внешнюю цепь переменную ЭДС. Согнутый рамкой проводник вращается в магнитном поле под действием посторонней силы. Концы рамки присоединены к двум медным кольцам 3 и 4, на которые наложены две угольные щетки 5 и 6. Во внешней цепи будет протекать изменяющийся по величине и направлению ток. Такой ток называется переменным в отличие от постоянного, который дают гальванические элементы и аккумуляторы. Переменный ток на электрических схемах принято обозначать условным знаком

Устройство для отвода переменного тока от ротора генератора

Рисунок 2. Устройство для отвода переменного тока от ротора генератора

В создании индуктированной ЭДС будут участвовать не все стороны рамки, а лишь те, которые пересекают магнитные линии. Эти стороны называются активными сторонами (на рисунке 2 они обозначены цифрами 1 и 2).

Конструкция генератора переменного тока, показанная на рисунке 2, не может быть практически использована. Недостатком ее является трудность создания однородного магнитного поля и большое магнитное сопротивление магнитному потоку, который значительный путь проходит по воздуху.

Магнитный поток машины при наличии стального барабана

В конструкциях современных электрических машин между полюсами электромагнита помещают стальной барабан, в пазы которого укладывают проводники обмотки. Такая конструкция машины представлена на рисунке 3. Магнитным линиям в этом случае приходится проходить по воздуху короткий путь между сталью полюсов и барабана. Можно доказать, что магнитные линии, проходя воздушный промежуток, будут входить в барабан в радиальном направлении и в таком же направлении будут выходить из него, чтобы попасть в другой полюс. В этом случае направление окружной скорости в каждый момент перпендикулярно направлению магнитных линий, то есть скорость будет все время нормальной скоростью (v = vn).

Стремление получить синусоидальную ЭДС заставляет конструктора машины придать такую форму полюсным наконечникам, при которой магнитная индукция в воздушном зазоре изменялась бы по закону синуса:

где Bm – максимальная магнитная индукция в воздушном зазоре при α = 90°, то есть

В этот момент ЭДС, индуктированная в проводнике, также имеет максимальное значение:

откуда общее выражение для ЭДС в проводнике будет:

Для получения индуктированной ЭДС в генераторах безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или движущееся поле будет пересекать неподвижный проводник. В рассмотренных конструкциях генераторов переменного тока обмотка, где индуктировалась переменная ЭДС, размещалась на вращающейся части машины – роторе, а полюса располагались на неподвижной части машины – статоре. Однако для того чтобы поставить обмотку переменного тока в более благоприятные условия, ее чаще располагают на статоре, а обмотку возбуждения полюсов помещают на роторе. Генератор такой конструкции представлен на рисунке 4.

Двухполюсный генератор переменного тока

Рисунок 4. Получение синусоидального переменного тока в двухполюсном генераторе

Постоянный ток, необходимый для обмотки возбуждения, подается от специального генератора-возбудителя постоянного тока, сидящего на одном валу с генератором переменного тока, или от выпрямительного устройства.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Источник

Получение переменного тока

date image2014-02-24
views image4848

facebook icon vkontakte icon twitter icon odnoklasniki icon

Электрические цепи однофазного переменного тока

Переменный электрический ток

Переменным называется ток, который изменяется в течение времени по величине или направлению. Переменный ток получил преимущественное распространение в промышленности, что связано с его преимуществами перед постоянным током:

− легко повышается и понижается напряжение с помощью трансформаторов;

− генераторы и двигатели переменного тока проще по устройству, в эксплуатации, надежней и дешевле;

− переменный ток удобнее вырабатывать на электростанциях;

− многие физические явления проявляются только при переменном токе.

− В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. Синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм.

Недостатки: в цепях питания потребителей таким током могут происходить перегрузки, вызванные реактивной мощностью потребителей (когда в цепи питания присутствуют индуктивности или емкости); переменный ток приводит к образованию переменных электромагнитных полей, воздействующих на работу различной радиоаппаратуры и др.

Переменный ток получают при помощи синхронных генераторов.

Синхронный генератор состоит из статора 1, обмотки статора 2 (А-х), ротора 3 и обмотки возбуждения 4.

Ротор выполнен в виде постоянного магнита или электромагнита с полюсами N и S. Магнитное поле ротора возбуждается обмоткой возбуждения, по которой протекает постоянный ток возбуждения IВ. Ротор принудительно приводится во вращение с частотой w от постороннего двигателя. (Т.е. к ротору подводится механическая энергия). При вращении магнитное поле ротора пересекает обмотку статора и в соответствии с законом электромагнитной индукции в ней индуцируется ЭДС:

где В — индукция магнитного поля полюсов ротора;

l — длина активной части обмотки статора А-х;

v — линейная скорость пересечения магнитным полем обмотки статора.

Форма изменения ЭДС обмотки статора синусоидальна:

Источник



Получение переменного электрического тока

Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

Получение переменного электрического тока

Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

Модель

Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

Получение переменной электродвижущей силы

Принцип действия генератора — получение переменной электродвижущей силы (напряжения)

Получение синусоидального напряженияПеременное синусоидальное напряжение

Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

Получение трехфазного переменного напряжения и тока

Получение трехфазного переменного напряжения и тока

Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.

Источник