Меню

Потери мощности короткого замыкания силового трансформатора

Расчет параметров короткого замыкания трансформатора

1. Виды потерь короткого замыкания

Потерями короткого замыкания двухобмоточного трансформатора называются потери, имеющие место в трансформаторе при подведенном к одной из обмоток напряжения короткого замыкания и замкнутой накоротко другой обмотке.
Потери короткого замыкания Рк в трансформаторе могут быть разделены на следующие составляющие:
– основные электрические потери в обмотках ВН и НН, вызванные рабочим током обмоток, Рэл1 и Рэл2;
– добавочные потери в обмотках ВН и НН, вызванные потоком рассеяния, Рg1 и Рg2;
– электрические потери в отводах между обмотками и вводами трансформатора, Ротв1 и Ротв2;
– добавочные потери в отводах, вызванные потоком рассеяния,
Ротв.g1 и Ротв.g2;
– потери в стенках бака и других металлических элементах конструкции трансформатора, вызванные потоком рассеяния обмоток и отводов.
Обычно сумма электрических и добавочных потерь в обмотке и отводах заменяется выражением:
Рэ + Рg = РэКg,
где Кg – коэффициент добавочных потерь.
Таким образом, полные потери короткого замыкания, Вт, могут быть выражены формулой
Рк = Рэ1Кg1 + Рэ2Кg2 + Ротв1Кgотв1 + Ротв2Кgотв2 + Рб.
Согласно ГОСТ 11677-85 расчет ведется на условно принятую температуру:
– для масляных и сухих трансформаторов классов изоляции А, Е, В – при t = +75 °С;
– для трансформаторов с изоляцией классов F, Н, С – при t = +115 °С.

2. Определение основных электрических потерь в обмотках

Для определения электрических потерь, Вт, можно воспользоваться формулой
Рэ = I2 R.
Однако на практике пользуются формулами, приведенными к более удобному виду:

для медного провода
Рэ = 2,4 ,
для алюминиевого провода
Рэ = 12,75 ,
где D – плотность тока в обмотках; Gм, GА – масса меди или алюминия в обмотке, кг.
Масса металла, кг, для обмоток ВН и НН может быть подсчитана по уравнениям:
для медного провода
Gм = 28сДсрW×П×10-5,
для алюминиевого провода
GА=8,47сДсрW×П×10-5,
где Dс = – средний диаметр обмотки ВН или НН; см; с – число активных стержней; W – число витков обмотки; П – сечение витка, мм2.

3. Определение добавочных потерь

Определение добавочных потерь в обмотках практически сводится к расчету коэффициента увеличения основных электрических потерь обмотки Кg. Этот коэффициент подсчитывается отдельно для каждой обмотки трансформатора.
Для частоты f = 50 Гц можно пользоваться следующими уравнениями:
для медного прямоугольного провода
при n £ 2
Кgм = I + 0,095 ;
при n >2
Кgм = I + 0,095 ;
для круглого провода
при n >2
Кgм = I + 0,044 ;
для алюминиевого прямоугольного провода
при n £ 2
КgА= I + 0,037 ;
при n > 2
КgА = I + 0,037 ;
для круглого провода
при n > 2
КgА = I + 0,017 ,
где n – число проводов обмотки в радиальном направлении;
для цилиндрических обмоток n = nсл;
для винтовых обмоток n равно числу параллельных проводов в одном ходе обмотки:
· одноходовой n = nв;
· двухходовой ;
· многоходовой ,
где k – число ходов обмотки; m – число проводов обмотки в осевом направлении, см;
для цилиндрических обмоток (nв – число параллельных проводов в витке);
для винтовых одноходовых обмоток: m = Wф;
· двухходовых m = 2Wф;
· многоходовых m = kWф,
где k – число ходов обмотки; для непрерывных катушечных обмоток m равно числу катушек m = nk; a – размер проводника в радиальном направлении обмотки, см, в – размер проводника в осевом направлении обмотки, см, – осевой размер обмотки, см; d – диаметр круглого провода, см; b – коэффициент, подсчитывается по формулам:
для прямоугольного провода
b = Кр;
для круглого провода
Кр,
где Кр – коэффициент приведения идеального поля рассеяния к реальному Кр ≈ 0,95.

4. Электрические потери в отводах

Подсчет электрических потерь в отводах сводится к определению длины проводников и массы металла в отводах. Этот подсчет может быть точно произведен после окончательного установления конструкции отводов.
В процессе расчета может быть произведено приближенное определение массы отводов. Длина отводов приближенно определяется, см,
при соединении обмотки в «звезду»
;
при соединении обмотки в «треугольник»
.
Масса металла отводов, кг, может быть найдена по формуле
Gотв.= 10-5,
где Потв, мм2 – сечение отводов, которое для расчета потерь может быть принято равным сечению витка соответствующей обмотки; g – удельная масса металла отводов (для меди = 8,9 кг/дм3, для алюминия = 2,7 кг/дм3).
Электрические потери, Вт, в отводах определяются по формуле:

Читайте также:  Хватает ваз 2109 мощности

Ротв = К ,
для меди К = 2,4;
для алюминия К = 12,75.
В нормальных силовых трансформаторах электрические потери в отводах составляют, как правило, не более 5–8 % потерь короткого замыкания, а добавочные потери в отводах не более 5 % электрических потерь в них.

5. Потери в стенках бака и других стальных деталях трансформатора

Потоки рассеяния трансформатора частично замыкаются через стенки бака, проходя на своем пути также и через другие стальные детали трансформатора. Потери, возникающие в этих стальных деталях и главным образом в стенках бака, пропорциональны квадрату тока нагрузки и также относятся к потерям короткого замыкания трансформатора.
Эти потери, Вт, не поддаются точному учету и ориентировочно принимаются:
Рб » 10 КS,,

где S – полная мощность трансформатора, кВА; К – коэффициент, который находится по табл. 1.

Значения коэффициента k при расчёте потерь в баке

Источник



ОПРЕДЕЛЕНИЕ ПОТЕРЬ КОРОТКОГО ЗАМЫКАНИЯ

date image2015-05-26
views image5562

facebook icon vkontakte icon twitter icon odnoklasniki icon

Потерями короткого замыкания двухобмоточного трансформатора согласно ГОСТ 16110-82 называются потери, возникающие в трансформаторе при номинальной частоте и установлении в одной из обмоток тока, соответствующего ее номинальной мощности, при замкнутой накоротко второй обмотке. Предполагается равенство номинальных мощностей обеих обмоток.

Потери короткого замыкания Рк в трансформаторе могут быть, разделены на следующие составляющие:1)основные потери в обмотках НН и ВН, вызванные рабочим током обмоток, Росн1 и Росн2; 2)добавочные потерн в обмотках НН и ВН, т.е. потери от вихревых токов, наведенных полем рассеяния в обмотках РД1 и РД2; 3)основные потери в отводах между обмотками и вводами (проходными изоляторами) трансформатора Ротв1 и Ротв2; 4)добавочные потери в отводах, вызванные полем рассеяния отводов, Ротв,Д1 и Ротв2,Д2; 5)потери в стенках бака и других металлических, главным образом ферромагнитных, элементах конструкции трансформатора, вызванные полем рассеяния обмоток и отводов, Pб.

Потери короткого замыкания могут быть рассчитаны или определены экспериментально в опыте короткого замыкания трансформатора. При опыте короткого замыкания номинальные токи в обмотках возникают при относительно малом напряжении (5-10 % номинального значения), а потери в магнитной системе, примерно пропорциональные второй степени напряжения, обычно пренебрежимо малы.

Обычно добавочные потери в обмотках и отводах рассчитывают, определяя коэффициент kД увеличения основных потерь вследствие наличия поля рассеяния. Так сумма основных и добавочных потерь в обмотке заменяется выражением

Таким образом, полные потери короткого замыкания, Вт, могут быть выражены формулой

(7.1)

Согласно ГОСТ 11677-85 за расчетную (условную) температуру, к которой должны быть приведены потери и напряжение короткого замыкания, принимают: 75 °С для всех масляных и сухих трансформаторов с изоляцией классов нагревостойкости А, Е, В; 115°С для трансформаторов с изоляцией классов нагревостойкости F, Н, С.

Полные потери короткого замыкания готового трансформатора не должны отклоняться от гарантийного значения, заданного ГОСТ или техническими условиями на проект трансформатора, более чем на 10%. Учитывая, что потери готового трансформатора вследствие нормальных допустимых отклонении в размерах его частей могут отклоняться на ±5% расчетного значения, при расчете не следует допускать отклонение расчетных потерь короткого замыкания от гарантийного значения более чем на 5 %.

При нормальной работе трансформатора, т.е. при нагрузке его номинальным током при номинальных первичном напряжении и частоте, в его обмотках, отводах и элементах конструкции под воздействием токов обмоток и созданного ими поля рассеяния возникают потери, практически равные потерям короткого замыкания и одинаково с ними изменяющиеся при изменении тока нагрузки. Поэтому при всех расчетах потерь, вызванных в нормально работающем трансформаторе изменяющимися токами нагрузки обмоток, и при расчете КПД трансформатора обычно в качестве исходной величины пользуются рассчитанными или измеренными потерями короткого замыкания.

В трехобмоточном трансформаторе рассчитываются и измеряются три значения потерь короткого замыкания для трех парных сочетаний обмоток (I и II, I и III, II и III) при нагрузке каждой пары обмоток током, соответствующим 100 % мощности трансформатора. Потери короткого замыкания трехобмоточного трансформатора изменяются в зависимости от того, как распределена нагрузка между тремя его обмотками. Допускается любое распределение нагрузки между тремя обмотками, но так, чтобы ни одна из обмоток не была длительно нагружена током, превышающим номинальный ток плюс 5 %-ная перегрузка, а общие потери короткого замыкания трех обмоток не превысили максимальные потери. При этом максимальными потерями считаются приведенные к расчетной температуре потери короткого замыкания той пары обмоток, которая имеет наибольшие потери короткого замыкания.

Читайте также:  402 мотор волга мощность

Источник

Напряжение короткого замыкания трансформатора

В энергетических системах существуют различные устройства, предназначенные для производства, преобразования и передачи электроэнергии на большие расстояния. Среди них следует отметить конструкции силовых трансформаторов. Именно они преобразуют одно значение напряжение в другое, в зависимости от потребностей. Важнейшей характеристикой является напряжение короткого замыкания трансформатора. Данная величина соответствует конкретному изделию и полностью зависит от его конструкции. Зная ее, возможно установить способность трансформатора к параллельной работе, позволяющей избежать увеличения токов, снизить перегрузки, более эффективно решать задачи электроснабжения.

  1. Общие сведения о трансформаторах
  2. Характеристика напряжения короткого замыкания
  3. Лабораторные испытания
  4. Опыт и напряжение КЗ
  5. Потери холостого хода и короткого замыкания

Общие сведения о трансформаторах

Практически на всех объектах энергосистемы практикуется установка трехфазных трансформаторов. Их потери по сравнению с однофазными устройствами снижены на 12-15%, а себестоимость на 20-25% ниже, чем у трех преобразователей с аналогичной суммарной мощностью.

Напряжение короткого замыкания трансформатора

Каждый трансформатор имеет собственную предельную единичную мощность, которая полностью зависит от размеров, веса и условий доставки оборудования к месту монтажа. Так мощность трехфазных устройств на 220 кВ составляет около 1000 МВА, при 330 кВ этот показатель повышается до 1250 МВА и т.д.

Применение однофазных трансформаторов встречается значительно реже. Они устанавливаются при невозможности выбора или изготовления трехфазного устройства с запланированной мощностью. Многие трехфазные преобразователи сложно доставлять к месту установки из-за больших размеров и веса. Поэтому однофазные устройства группируются в зависимости от требуемой общей мощности. Приборы на 500 кВ составляют 3х533 МВА, на 750 кВ – 3х417 МВА, на 1150 кВ – 3х667 МВА.

В соответствии с числом обмоток, рассчитанных на разные потенциалы, преобразователи могут быть двух- или трехобмоточными. В свою очередь, обмотки с одним и тем же напряжением бывают разделены на параллельные ветви в количестве две и выше. Они разъединены между собой перегородками и разделяются изоляцией с заземляющими элементами. Подобные обмотки называются расщепленными, и в соответствии с напряжением, которое бывает высшим, средним или низшим, они обозначаются как ВН, СН и НН.

Наиболее значимые характеристиками трансформаторов:

  • Номинальная мощность. Это наибольший показатель, до которого преобразователь может быть беспрерывно нагружен в обычных условиях, определенных паспортными данными
  • Номинальное обмоточное напряжение. Включает в себя сумму потенциалов обмоток №№ 1 и 2 в режиме холостого хода. При подключении к потребителю и подаче на обмотку-1 обыкновенного напряжения, во вторичной обмотке оно будет снижено на величину потерь. Отношение высшего напряжения к низшему называется коэффициентом трансформации.
  • Номинальные токи. Их величина отмечена в документации и должна обеспечивать нормальную функциональность трансформатора в течение продолжительного времени.
  • Номинальный ток обмоток. Величина определяется номинальной мощностью и потенциалом преобразователя.
  • Напряжение КЗ трансформатора. Образуется в условиях, когда обмотка-2 коротко замыкается, а к первичной подходит обычный номинальный ток. Данный показатель определяется по спаду напряжения и характеризует величину полного сопротивления трансформаторных обмоток.

Характеристика напряжения короткого замыкания

Рассматриваемый параметр является одной из основных характеристик трансформаторных устройств. Его показатели должны быть минимальными во избежание чрезмерных ограничений токов КЗ. Проводимые испытания устанавливают их соответствие нормам и требованиям, определяемым ПУЭ. Одновременно проверяется состояние изоляции проводов.

В трансформаторах с двумя обмотками напряжением, КЗ является величина, приведенная к заданной температуре и номинальной частоте, подводимая к одной из обмоток, в то время как другая замыкается накоротко. После этого номинальный ток устанавливается в каждой обмотке, а переключатель занимает положение, обеспечивающее подачу номинального напряжения.

Используя напряжение КЗ, можно установить падение напряжения, внешние характеристики и токи короткого замыкания преобразователя. Эти данные учитываются при дальнейшем включении трансформатора в параллельную работу. Напряжение короткого замыкания включает в себя активную и реактивную составляющие.

Читайте также:  Значительная мощность чем обусловлены

Величина активной составляющей определяется в процентах и вычисляется по следующей формуле: Ua = (Pоб1 + Pоб2)/10Sн = Роб/10Sн, в которой Роб – общие потери в трансформаторных обмотках, Sн – номинальная мощность устройства (кВА).

Значение реактивной составляющей определяется по собственной формуле, в которой все переменные величины определяются заранее: Хк = √Zk2 – Rk2. В ней Zk2 и Rk2 являются общим и активным сопротивлением вторичной обмотки.

Лабораторные испытания

В режиме КЗ обмотка-2 оказывается перемкнутой проводником тока, сопротивление которого стремится к нулю. В процессе деятельности трансформатора, короткое замыкание приводит к возникновению аварийного режима, поскольку величина первичного и вторичного токов многократно возрастает в сравнении с номиналом. В связи с этим для таких устройств предусматривается специальная защита для самостоятельного отключения.

В лабораториях короткое замыкание используется для испытания трансформаторов. С этой целью на обмотку-1 подается напряжение Uк, не превышающее номинал. Обмотка-2 замыкается коротко и в ней возникает напряжение, обозначаемое uK, которое является напряжением короткого замыкания трансформатора, выраженное в % от Uк. При этом ток короткого замыкания равен номинальному. Как формула — это будет выглядеть в виде uK = (Uк х 100)/U1ном, где U1ном будет номинальным напряжением в первичной обмотке.

Напряжение КЗ напрямую связано с высшим напряжением трансформаторных обмоток. Если оно составляет от 6 до 10 кВ, то величина uK будет 5,5%, при 35 кВ – 6,5-7,5%, при 110 кВ – 10,5% и далее по нарастающей. Быстро найти значение поможет специальная таблица.

Опыт и напряжение КЗ

Установить параметры трансформатора с достаточно высокой точностью позволяет опыт короткого замыкания. Для этой цели используется специальная методика, при которой обмотка-2 коротко замыкается с помощью токопроводящей перемычки или проводника. Сопротивление замыкающего элемента очень низкое и стремится к нулю. В обмотку-1 поступает напряжение (Uк), при котором сила тока (Iном) будет номинальной. К выводам подключаются измерительные приборы – амперметр, вольтметр и ваттметр, необходимые для выявления требуемых показателей трансформатора.

В режиме КЗ напряжение короткого замыкания uK будет слишком маленьким, что вызывает многократное снижение потерь холостого хода по сравнению с номиналом. Следовательно, можно условно принять мощность первичной обмотки равной нулю – Рпо = 0, а мощность, замеряемая ваттметром, будет потерянной мощностью короткого замыкания (Рпк), вызванной под влиянием активного сопротивления трансформаторных обмоток.

При режиме с одинаковыми токами можно определить величину номинальных потерь мощности, связанных с нагревом обмоток, известные как потери короткого замыкания или электрические потери (Рпк.ном).

Потери холостого хода и короткого замыкания

Помимо напряжения короткого замыкания существуют и другие, не менее важные параметры трансформаторных устройств. Например, экономичность их работы во многом определяется потерями холостого хода (Рх) и короткого замыкания (Рк).

В первом случае затраты связаны с потерями в стальных компонентах, задействованных в создании вихревых токов и перемагничивании. Они снижаются за счет использования специальной электротехнической стали, содержащей малое количество углерода и определенные виды присадок. Для защиты используется жаростойкое изоляционное покрытие. Существуют разные уровни потерь холостого хода и причины, от чего зависит величина их для преобразователей. Удельные потери уровня А составляют до 0,9 Вт/кг, а на уровне Б они будут не выше 1,1 Вт/кг.

Потери КЗ включают в себя потери в обмотках, находящихся под нагрузкой, а также дополнительные потери в обмотках и конструктивных элементах. На их появление оказывают влияние магнитные поля рассеяния, способствующие возникновению вихревых токов в витках, расположенных по краям обмотки и самих деталях устройства. Снизить такие потери возможно за счет использования в обмотках многожильного транспонированного провода, а на стенках бака устанавливаются экраны из магнитных шунтов.

Опыт короткого замыкания трансформатора

Режим короткого замыкания трансформатора

Режим короткого замыкания

Как рассчитать ток короткого замыкания

Ток холостого хода трансформатора

Ток короткого замыкания однофазных и трехфазных сетей

Источник