Меню

Пожарная опасность вихревых токов

Искрение и электрическая дуга

Всякая электриче­ская искра или дуга есть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой, при пробое изоля­ции между проводниками, при работе электрических ма­шин — между щетками и коллектором (контактными кольцами), а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной ве­личине напряжения, происходит разряд, сопровождаю­щийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой раз­ряд может быть в виде электрической д у ги.

Искры и электрическая дуга, при наличии в помеще­ниях легкогорючих веществ и взрывчатой системы, могут быть причиной пожара, взрыва. Для уменьшения пожарной опасности от электрических искр и дут необходимо: искрящие по условиям работы части выключателей, пе­реключателей, рубильников, магнитных пускателей, кон­такторов и т. п. закрывать крышками, кожухами, колпа­ками; выносить из взрывоопасных помещений искрящие аппараты в безопасное место или применять такие их исполнения (например, маслонаполненное), которые обеспечивают безопасность взрыва; правильно произво­дить соединение и оконцевание проводников; следить за состоянием щеток, колец, коллекторов электрических ма­шин, контактов выключателей, рубильников, магнитных пускателей.

Большие переходные сопротивления

Переход­ным сопротивлением называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электрический аппарат, при наличии плохого контакта, например, в местах соединений и оконцеваний проводов, в контактах машин и аппаратов. При прохождении тока нагрузки в таких местах за единицу времени выделяется некоторое количество тепла, величина которого пропорциональна квадрату тока и сопротивлению места переходного кон­такта, которое может нагреваться до весьма высокой температуры. Если нагретые контакты соприкасаются с горючими материалами, то возможно их зажигание, а при наличии взрывчатой системы возможен взрыв. В этом и состоит пожарная опасность переходных сопро­тивлений, которая усугубляется тем, что места с наличи­ем переходного сопротивления трудно обнаружить, а за­щитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожа­ров, так как ток в цепи не возрастает, а нагрев участка с переходным сопротивлением происходит только вслед­ствие увеличения сопротивления. Величина переходного сопротивления контактов зависит от материала, из кото­рого они изготовлены, геометрической формы и разме­ров, степени обработки поверхностей контактов, силы нажатия контактов и степени окисления. Особенно ин­тенсивное окисление происходит во влажной среде и с химически активными веществами, а также при нагреве контактов выше 70—75 °С.

Профилактика переходных сопротивлений. Для пре­дупреждения возникновения пожаров от больших переходных сопротивлений необходимо тщательное соедине­ние проводов и кабелей (скруткой, пайкой, сваркой, опрессованием). На съемных концах для удобства и на­дежности контактов следует применять специальные наконечники и зажимы, что особенно важно для алюми­ниевых проводов и кабелей; для отвода тепла и рассеи­вания его в окружающую среду необходимо изготовлять контакты определенной массы и поверхности охлажде­ния; для уменьшения влияния окисления на переходное сопротивление размыкающихся контактов последние из­готовляют таким образом, чтобы размыкание и замыка­ние их сопровождалось трением одного контакта по-дру­гому. В этом случае происходит их самоочистка от плен­ки окиси. Контакты из меди, латуни, бронзы часто защищают от окисления покрытием тонким слоем олова, серебра. В процессе эксплуатации необходимо следить за тем, чтобы контакты машин, аппаратов и т. п. плотно и с достаточной силой прилегали друг к другу. Большие переходные сопротивления полезно используются при производстве контактной электросварки металлов.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Токи Фуко. Вихревые токи. Описание.

Природа вихревых токов

Фото 2

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.
Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

Фото 3

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Читайте также:  Задачи трехфазный переменный ток треугольник

Фото 4

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Сила вихревых токов напрямую зависит от скорости изменения магнитного потока.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя. Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Значение

Чем быстрее движется проводящее тело в поле, тем сильнее будут токи Фуко. Частота переменного тока и его амплитуда при возрастании тоже способствуют их увеличению.
При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt Читайте также: Акт передачи показаний электросчетчика при смене собственника

Применяют следующие способы минимизации потерь на вихревые токи:

  1. шихтовка. Сердечник собирают из тонких пластин (0,1 – 0,5 мм), электрически изолированных друг от друга лаком, окалиной или иным диэлектриком. Плоскость пластины направлена вдоль силовых линий поля. Поэтому для токов Фуко, стремящихся двигаться в перпендикулярной этим линиям плоскости, такой сердечник имеет большое сопротивление. Аналогичными свойствами обладает стержень, собранный из изолированных друг от друга отрезков отожженной проволоки. Но они должны располагаться параллельно направлению магнитного потока (силовым линиям). Таким же способом ослабляются токи Фуко в проводах — их набирают из множества переплетенных изолированных жил (литцендрат). Заодно данный прием нейтрализует скин-эффект;
  2. изготовление сердечников из ферритов — магнитомягкое железо, получаемое путем спекания порошка. Структурно и по свойствам напоминает графит (такое же хрупкое). Имеет низкое электрическое сопротивление, но высокий коэффициент магнитопроницаемости (магнитодиэлектрик). Сердечник из феррита в шихтовке не нуждается — его делают цельным;
  3. введение в материал сердечника добавок, повышающих электрическое сопротивление. Так, в сталь добавляют кремний.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи

Подробности Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

где R — сопротивление проводника.

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым. Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Электростатическое поле — создается неподвижными электрическими зарядами, силовые линии поля разомкнуты — -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0

Индукционное электрическое поле ( вихревое электр. поле ) — вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.

Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах — магнитных изоляторах вихревые токи практически не возникают.

Читайте также:  Количество теплоты для проводника с током формула

Использование вихревых токов

— нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.

Вредное действие вихревых токов

— это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.

Следующая страница «ЭДС индукции в движущихся проводниках»

Назад в раздел «10-11 класс»

Электромагнитное поле — Класс!ная физика

Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера — Действие магнитного поля на движущийся заряд.Магнитные свойства вещества — Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца — ЭДС электромагнитной индукции. Вихревое электрическое поле — ЭДС индукции в движущихся проводниках — Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе

Источник

Причины пожаров от электроустановок.

Короткое замыкание (КЗ). Коротким замыканием называется всякое непредусмотренное нормальными условиями работы замыкание через малое сопротивление между фазами, или нескольких фаз на землю (или нулевой провод). Ток при этом резко возрастает, вызывая разогрев и даже расплавление проводников. Короткие замыкания могут быть трехфазными, двухфазными, однофазными на землю. Однофазные КЗ легко переходят в трехфазные.

Основные причины коротких замыканий:нарушение изоляции проводов, кабелей, машин и т.д.;неправильный монтаж электросетей и электрооборудования;отсутствие систематического контроля сопротивления изоляции;перекрытие фаз животными.

Наиболее характерными признаками КЗ являются оплавления проводов и других токоведущих устройств. Эти оплавления в большинстве случаев имеют вид наплавленных шариков металла.

Профилактику КЗ следует проводить в двух направлениях:во-первых: не допускать возникновения КЗ,во-вторых: ограничить время действия опасных токов КЗ.

С этой целью необходимо правильно выбирать, монтировать и эксплуатировать электроустановки. Электрооборудование должно соответствовать характеру окружающей среды, величины и роду тока, напряжению, мощности нагрузки. В профилактических целях необходимо регулярно проводить планово-предупредительные осмотры и измерения сопротивления изоляции.Для ограничения действия опасных токов КЗ необходимо правильно выбирать аппараты защиты, которые предназначены отключать поврежденный участок раньше, чем произойдет воспламенение изоляции. Для этой цели используются быстродействующие автоматы (время отключения 0,008-0,005 сек) и плавкие предохранители.

Перегрузка. Перегрузкой называется такое явление, когда по проводам и кабелям течет рабочий ток IР больше длительно допустимого IД: IР> IД. Величина длительно допустимого тока зависит от сечения и материала проводников, способа прокладки и температуры окружающей среды. Длительно допустимые токовые нагрузки на провода и кабели различных марок, с учетом вышеизложенного, установлены Правилами устройства электроустановок (ПУЭ) из расчета безопасного нагрева жил проводов. Температура нагрева проводов и кабелей лежит в пределах 65-80 градусов. При двукратной и более перегрузке проводников со сгораемой изоляцией происходит ее воспламенение.

Основными причинами перегрузок являются:несоответствие сечения проводников рабочему току;параллельное включение в сеть непредусмотренных расчетом токоприемников;попадание на проводники разрядов молнии;повышение температуры окружающей среды;перегрев двигателей при механической перегрузке на валу.

Профилактика перегрузок:Необходимо правильно выбирать сечение проводников по нагреву; ограничивать параллельное включение токоприемников; создавать условия для охлаждения проводов, электромашин, аппаратов. Во избежание перегрузок двигателей необходимо правильно выбирать двигатели по мощности, не допускать их механической перегрузки, работы на двух фазах, своевременно очищать двигатели от пыли и загрязнений.

Искрение и электрическая дуга. Возникает в результате прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой, при пробое изоляции, между щетками и коллектором электродвигателей. Под действием электрического поля воздух между контактами ионизируется и при достаточной величине напряжения происходит разряд, сопровождается свечением воздуха и треском, а при достаточной мощности искровой разряд может быть в виде электрической дуги.

Искры и электрическая дуга при наличии в помещении паров ЛВЖ или горючих газов могут быть причиной пожара или взрыва.

Для уменьшения пожарной опасности от электрических искр и дуг необходимо:

— искрящие по условиям работы части выключателей, переключателей, рубильников, магнитных пускателей, контакторов и т.п. закрывать крышками, кожухами, колпаками;

— выносить из взрывоопасных помещений искрящие аппараты в безопасное место или применять такие их исполнения (например, маслонаполненное), которые обеспечивают взрывобезопасность;- правильно производить соединение и оконцевание проводников;

— следить за состоянием щеток, колец, коллекторов электрических машин, контактов, выключателей, рубильников, магнитных пускателей.

Большое переходное сопротивление —возникает в местах перехода тока с одного проводника на другой либо с проводника на какой-либо электрический аппарат, при наличии плохого контакта, например, в местах соединений и оконцеваний проводов, в контактах машин и аппаратов. Пожарная опасность переходных сопротивлений усугубляется тем, что эти места трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожаров, так как ток в цепи не возрастает, а нагрев происходит только за счет повышения сопротивления. Особенно интенсивное окисление происходит во влажной и химически активной средах, а также при нагреве контактов выше 70-75 градусов.

Для предупреждения возникновения пожаров от больших переходных сопротивлений необходимо тщательное соединение проводов и кабелей (опрессованием, пайкой, сваркой, или специальными зажимами). В процессе эксплуатации необходимо следить за тем, чтобы контакты машин, аппаратов и т.п. плотно и с достаточной силой прилегали друг к другу.

Вихревые токи. Токи, которые индуктируются в массивных металлических телах при пересечении их магнитными силовыми линиями, называются вихревыми токами (токами Фуко). Вихревые токи могут быть очень большими и сильно нагревать сердечники машин и аппаратов, что может привести к разрушению изоляции проводников и даже ее воспламенению. Устранить полностью вихревые токи нельзя, но уменьшить можно и нужно.Для уменьшения вихревых токов якоря генераторов, электрических двигателей, сердечники трансформаторов, электромагнитов делают не сплошными, а набранными из отдельных тонких (0,35-0,5) штампованных листов стали, расположенных по направлению магнитных силовых линий и изолированных один от другого. В этом случае, вследствие малого поперечного сечения каждого стального листа, уменьшается величина проходящего через него магнитного потока, а, следовательно, уменьшается индуктируемая в нем ЭДС и ток. С этой же целью применяют легированные стали (стали, содержащие до 4% кремния). Примесь кремния не изменяет свойств стали, но значительно увеличивает ее электрическое сопротивление, уменьшает величину вихревого тока и его тепловое действие. Вихревые токи находят и полезное применение, например, в электрометаллургии для индукционного нагрева заготовок.

Читайте также:  Рассчитайте силу тока в проводнике сопротивлением 5 ом если напряжение 10 в

Взрывоопасные смеси. Классификация взрывоопасных смесей горючих газов и паров легковоспламеняющихся жидкостей (ЛВЖ) с воздухом по категориям и группам (ПИВЭ, ПИВРЭ, ГОСТ 12.1.011.-78).

Источник



Что такое вихревые токи и какие меры принимают для их уменьшения

Что такое вихревые токи и почему их еще называют токами Фуко? Причины возникновения данного явления и способы применения.

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают. Содержание:

  • Краткое определение
  • История открытия
  • Вред от вихревых токов
  • Как снизить потери
  • Применение на практике

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

Материалы по теме:

  • Как сделать индукционный котел своими руками
  • Зависимость сопротивления проводника от температуры
  • Правило буравчика простыми словами


Источник