Меню

Правильно направлены магнитные стрелки вокруг проводника с током да

Магнитное поле прямолинейного проводника с током

Дата публикации: 09 августа 2013 .
Категория: Статьи.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Рисунок 1. Магнитное поле вокруг проводника с током
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по «правилу буравчика» Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по «правилу буравчика»

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Магнитная индукция
Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µмагнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ = 4 × π × 10 -7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ называется напряженностью магнитного поля и обозначается буквой H:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник

Магнитное поле. Линии

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс. Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим. Об этом свидетельствуют следующие опытные факты.

• Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

• Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

• Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей. Изолированных магнитных полюсов (так называемых магнитных монополей — аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

• Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд ,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля.А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Читайте также:  Это физическая величина характеризующая свойства проводника по которому течет электрический ток

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий —так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии — это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии.

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии.

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства.

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс — красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году — в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и — северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи.

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас.

Правило винта (или правило буравчика, или правило штопора — это уж кому что ближе ;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока.

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки — вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля, или магнитной индукцией. Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции. Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки. Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки.

Правило винта. Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока.

Как видите, ток и поле меняются ролями — по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 — изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом.

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец — к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля — параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке — тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь — главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Читайте также:  Сила тока при запуске двигателя автомобиля

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита — полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него.

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой — это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке — почти через сто лет после гениальной догадки Ампера.

Источник

Как определить направление магнитных линий

Как определить направление магнитных линий

  • Как определить направление магнитных линий
  • Как определить направление силы Лоренца
  • Как определить направление магнитной индукции
  • — источник тока (проводник, соленоид);
  • — правая рука;
  • — магнитные стрелки.
  • Как увидеть магнитное полеКак увидеть магнитное поле
  • Каким образом определить магнитное поле токаКаким образом определить магнитное поле тока
  • Как найти индукцию поляКак найти индукцию поля
  • Как определить направление силы токаКак определить направление силы тока
  • Как определить направление вектора индукции
  • Как определить направление линии индукцииКак определить направление линии индукции
  • Как найти направление магнитного поляКак найти направление магнитного поля
  • Как найти вектор магнитной индукцииКак найти вектор магнитной индукции
  • Как обнаружить магнитное полеКак обнаружить магнитное поле
  • Как определить полярность магнитаКак определить полярность магнита
  • Как определить вектор магнитной индукцииКак определить вектор магнитной индукции
  • Как определить магнитное полеКак определить магнитное поле
  • Как работают правила левой и правой рукиКак работают правила левой и правой руки
  • Что такое сила АмпераЧто такое сила Ампера
  • Как определить магнитную индукцию поляКак определить магнитную индукцию поля
  • Как измерить магнитное полеКак измерить магнитное поле
  • Как определить азимут компасомКак определить азимут компасом
  • Как измерить азимутКак измерить азимут
  • Как определить силу магнитного поляКак определить силу магнитного поля
  • В чем состоит принцип суперпозиции магнитных полейВ чем состоит принцип суперпозиции магнитных полей
  • Как обнаружить электрическое полеКак обнаружить электрическое поле
  • Как найти дирекционный уголКак найти дирекционный угол
  • Как научиться пользоваться компасомКак научиться пользоваться компасом

Источник



Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Читайте также:  Как зашунтировать трансформатор тока

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник