Меню

Правило ленца самоиндукция вихревые токи

Электромагнитная индукция. Правило Ленца

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Формула магнитного потока

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф , площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер ( В б ) . Магнитный поток, равный 1 В б , может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л , которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д . Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Закон Фарадея:

δ и н д = — ∆ Φ ∆ t

Правило Ленца

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Рисунок 1 . 20 . 2 . Правило Ленца

Здесь ∆ Φ ∆ t > 0 , а δ и н д 0 I и н д протекает навстречу выбранному положительному направлению l → обхода контура.

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х . Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = — F υ ∆ t = — I B l υ ∆ t = — υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Читайте также:  Анодная характеристика анодного тока от напряжения

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Рисунок 1 . 20 . 4 . Модель электромагнитной индукции

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Рисунок 1 . 20 . 5 . Модель опытов Фарадея

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Рисунок 1 . 20 . 6 . Модель генератора переменного тока

Источник

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Читайте также:  Опасность поражения электрическим током при сварочных работах

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник

Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность

Магнитный поток Ф= BS cos . Изменение магнитного потока через контур может происходить: 1) в случае неподвижного проводящего контура, помещенного в изменяющееся во времени поле; 2) в случае проводника, движущегося в магнитном поло, которое может и не меняться со временем. Значение ЭДС индукции в обоих случаях определяется законом электромагнитной индукции, но происхождение этой ЭДС различно.

Рассмотрим сначала первый случай возникновения индукционного тока. Поместим круговой проволочный виток радиусом r в переменное во времени однородное магнитное поле (рис. 2.8).

Пусть индукция магнитного поля увеличивается, тогда будет увеличиваться со временем и магнитный поток через поверхность, ограниченную витком. Согласно закону электромагнитной индукции в витке появится индукционный ток. При изменении индукции магнитного поля по линейному закону индукционный ток будет постоянен.

Какие же силы заставляют заряды в витке двигаться? Само магнитное поле, пронизывающее катушку, этого сделать не может, так как магнитное поле действует исключительно на движущиеся заряды (этим-то оно и отличается от электрического), а проводник с находящимися в нем электронами неподвижен.

Кроме магнитного поля, на заряды, причем как на движущиеся, так и на неподвижные, действует еще электрическое поле. Но ведь те поля, о которых пока шла речь (электростатичсское или стационарное), создаются электрическими зарядами, а индукционный ток появляется в результате действия меняющегося магнитного поля. Поэтому можно предположить, что электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле непосредственно порождается меняющимся магнитным полем. Тем самым утверждается новое фундаментальное свойство поля: изменяясь во времени, магнитное поле порождает электрическое поле. К этому выводу впервые пришел Дж. Максвелл.

Теперь явление электромагнитной индукции предстает перед нами в новом свете. Главное в нем — это процесс порождения полем магнитным поля электрического. При этом наличие проводящего контура, например катушки, не меняет существа процесса. Проводник с запасом свободных электронов (или других частиц) играет роль прибора: он лишь позволяет обнаружить возникающее электрическое поле.

Поле приводит в движение электроны и проводнике и тем самым обнаруживает себя. Сущность явления электромагнитной индукции в неподвижном проводнике состоит не столько в появлении индукционного тока, сколько в возникновении электрического поля, которое приводит в движение электрические заряды.

Читайте также:  Генераторы переменного тока для сварочных аппаратов

Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое.

Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле (рис. 2.9).

Чем быстрее меняется магнитная индукция, тем больше напряженность электрического поля. Согласно правилу Ленца при возрастании магнитной индукции направление вектора напряженности электрического поля образует левый винт с направлением вектора . Это означает, что при вращении винта с левой нарезкой в направлении линий напряженности электрического поля поступательное перемещение винта совпадает с направлением вектора магнитной индукции. Напротив, при убывании магнитной индукции направление вектора напряженности образует правый винт с направлением вектора .

Направление силовых линий напряженности совпадает с направлением индукционного тока. Сила, действующая со стороны вихревого электрического поля на заряд q (сторонняя сила), по-прежнему равна = q. Но в отличие от случая стационарного электрического поля работа вихревого поля по перемещению заряда q на замкнутом пути не равна нулю. Ведь при перемещении заряда вдоль замкнутой линии напряженности электрического поля работа на всех участках пути имеет один и тот же знак, так как сила и перемещение совпадают по направлению. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Индукционные токи в массивных проводниках. Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало.

Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление электромагнитной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д.

Однако во многих устройствах возникновение токов Фуко приводит к бесполезным и даже нежелательным потерям энергии на выделение тепла. Поэтому железные сердечники трансформаторов, электродвигателей, генераторов и т. д. делают не сплошными, а состоящими из отдельных пластин, изолированных друг от друга. Поверхности пластин должны быть перпендикулярны направлению вектора напряженности вихревого электрического поля. Сопротивление электрическому току пластин будет при этом максимальным, а выделение тепла — минимальным.

Применение ферритов. Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каждой пластине.

При перемагничивании в ферритах не возникают вихревые токи. В результате потери энергии на выделение в них тепла сводятся к минимуму. Поэтому из ферритов делают сердечники высокочастотных трансформаторов, магнитные антенны транзисторов и др. Ферритовые сердечники изготовляют из смеси порошков исходных веществ. Смесь прессуется и подвергается значительной термической обработке.

При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать.

Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Электромагнитная индукция. Самоиндукция и взаимоиндукция.

Электромагнитная индукция (индукция значит наведение) это явление, при котором в замкнутом контуре возникает электрический ток при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было обнаружено в 1831 г. М. Фарадеем. Ток, возникающий при электромагнитной индукции, называют индукционным. Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея.

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностьюкатушки. Единица индуктивности в СИ называется генри (Гн).

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции. При изменении тока в одном из проводников или при изменении взаимного расположения проводников происходит изменение магнитного потока через (воображаемую) поверхность, «натянутую» на контур второго, созданного магнитным полем, порожденным током в первом проводнике, что по закону электромагнитной индукции вызывает возникновение ЭДС во втором проводнике. Если второй проводник замкнут, то под действием ЭДС взаимоиндукции в нём образуется индуцированный ток. И наоборот, изменение тока во второй цепи вызовет появление ЭДС в первой. Направление тока, возникшего при взаимоиндукции, определяется по правилу Ленца. Правило указывает на то, что изменение тока в одной цепи (катушке) встречает противодействие со стороны другой цепи (катушки).

Чем большая часть магнитного поля первой цепи пронизывает вторую цепь, тем сильнее взаимоиндукция между цепями. С количественной стороны явление взаимоиндукции характеризуется взаимной индуктивностью (коэффициентом взаимоиндукции, коэффициентом связи). Для изменения величины индуктивной связи между цепями, катушки делают подвижными. Приборы, служащие для изменения взаимоиндукции между цепями, называются вариометрами связи.

Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.

Источник