Меню

Предельных токов плавкие предохранители

Время токовая характеристика для предохранителей и выключателей.

Здравствуйте, дорогие читатели! Сегодня узнаем, что такое время токовая характеристика (ВТХ), рассмотрим ВТХ на примере предохранителей и выключателей. И так…

Электрический ток обладает одной отличительной чертой: он способен протекать только по замкнутому контуру. Если же эту цепь разорвать, то его действие сразу прекращается. Это свойство нашло воплощение в работе максимальных токовых защит, основанных на использовании предохранителей и автоматических выключателей.

Они подбираются таким образом, чтобы могли длительное время выдерживать номинальное значение протекающего через них тока. Этим обеспечивается надёжность электроснабжения потребителей. В то же время предохранители и автоматические выключатели обладают защитными функциями: во время возникновения аварийных режимов в контролируемой схеме они разрывают проходящий через них опасный ток.

При этом в комплексе учитываются два фактора:

Плавкая вставка предохранителя перегорает от теплового воздействия, созданного проходящим по ней током.

Автоматический выключатель тоже учитывает температурный перегрев схемы и размыкает свои силовые контакты за счет работы теплового расцепителя. В то же время в его составе имеется еще одно устройство — электромагнитный расцепитель, который реагирует на превышение электромагнитной энергии, возникающей даже в импульсном режиме.

Подробнее про устройство, принцип действия и особенности эксплуатации автоматических выключателей и предохранителей рассказано здесь:

О работе всех этих устройств судят по определенным техническим характеристикам, которые принято называть время токовыми потому, что они точно определяют время срабатывания защит, учитывая его зависимость от кратности превышения тока аварийного режима относительно номинального состояния.

Время токовая характеристика (ВТХ) выражает графиками в декартовых координатах. По оси ординат располагают время, отсчитываемое в секундах, а абсцисс — отношение протекающего тока аварийного режима I к номинальной величине Iн коммутационного аппарата.

Для чего создается защитная характеристика у плавкой вставки

В целях правильной работы предохранителя внутри электрической схемы необходимо учитывать его:

Основные параметры защитной характеристики предохранителя

График срабатывания предохранителей при различных токах выражается кривой линией, разделяющей рабочее пространство координат на две части:

Первая часть на графике показана светло-зелёным цветом, а вторая выделена бежевым.

Время токовая характеристика

Защитная характеристика плавкой вставки предохранителя

Защитная характеристика у плавкой вставки лежит на границе этих двух зон. В пространстве рабочих токов предохранитель остается целым, а при увеличении их значений выше критического состояния перегорает.

Зона токов предельного отключения опасна для оборудования и должна быть отключена максимально быстро.

Защитная характеристика плавкой вставки выражает продолжительность отрезка времени от начала создания аварийного режима до момента его отключения, представленную в зависимости к превышения величины опасного тока над номинальным значением предохранителя.

Плавкая вставка характеризуется тремя видами токов:

Плавкая вставка предохранителя защищает подключенную к ней схему от двух видов аварийных режимов:

Все эти режимы и виды токов учитываются при выборе предохранителя и плавкой вставки. Для этого разработаны математические соотношения, преобразованные графиками и таблицами в удобной форме.

Как создается защитная характеристика предохранителя

Плавкая вставка способна работать защитой только один раз. После этого она сгорает. Поэтому ее характеристику можно создать только косвенным путем.

Для этого на заводе выбирают случайным образом определённое количество образцов из каждой партии готовой продукции. Их используют для проведения дальнейших электрических испытаний под действием различных токов. По их результатам составляют таблицы и графики, которые позволяют судить о качестве выпущенной серии предохранителей.

Назначение защитной характеристики предохранителя

Плавкая вставка оценивается электрическими параметрами для решения чисто практической задачи: обеспечения правильного ее выбора по рабочим и защитным свойствам.

Для этого учитывают:

Без использования защитной характеристики плавкой вставки правильно выбрать предохранитель для его надежной работы в электрической схеме невозможно.

Как работает время токовая характеристика у автоматического выключателя

На выбор время токовой характеристики оказывают влияние:

Влияние конструкции защит автомата на форму его характеристики срабатывания

Обеспечением защитных свойств в автоматическом выключателе занимаются два встроенных устройства, работающие по принципам реле прямого действия. Они расцепляют силовые контакты автомата при превышении номинальных значений по критериям ограничения:

Биметаллическая пластина теплового расцепителя воспринимает нагрев проводов обмотки. При его превышении она изгибается, выводя из удержания узел сцепления.

Время токовая характеристика

Принцип работы теплового расцепителя

Под действием усилия натяжения пружины поворачивается освобожденное от удержания подвижное коромысло, а его силовые контакты разрывают цепь питания.

У электромагнитного расцепителя отключение силовых контактов происходит за счет выбивания удерживающего рычага пружины ударом толкателя, которое происходит под воздействием тока аварийного режима.

Время токовая характеристика

Принцип работы электромагнитного расцепителя

В отличие от предохранителя с перегораемой плавкой вставкой оба этих устройства созданы для многоразового использования. Они позволяют оперативно восстанавливать отключения схемы после предотвращения ненормальных ситуаций.

Работа теплового расцепителя и электромагнитной отсечки входит в алгоритм отключения автоматического выключателя и комплексно учитывается при его срабатывании во время токовой характеристике.

Поскольку температура окружающей среды и биметаллической пластины влияют на скорость работы защит, то все измерения принято проводить при +30 градусах Цельсия.

График время токовой характеристики для автоматического выключателя представляет собой сложную линию, выделенную буквами АВС. Верхний участок АВ соответствует работе теплового расцепителя, а его нижняя часть ВС — электромагнитной отсечке.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Время токовая характеристика, основные параметры графика

Учет влияния температуры

В отличие от защитной характеристики плавкой вставки предохранителя у автоматического выключателя график ВТХ представлен двумя линиями:

Зона между этими двумя крайними графиками выделена цветом. При работе автоматического выключателя следует учитывать, что он может находиться где-то внутри показанной зоны. В этом случае время отключения аварийных токов несколько сокращается в прогретом состоянии и увеличивается в холодном. За счет этого создается разброс параметров срабатывания.

Температура конструктивных элементов может оказывать значительное влияние на время срабатывания автомата. Особенно актуальным это становится при проведении электрических проверок, требующих нескольких измерений. Для их повторов необходимо обеспечивать время на остывание защит до +30 градусов.

Деление ВТХ на зоны

Автоматические выключатели строго разделяют по зонам время токовой характеристики для выделения эксплуатационных областей:

Линия токов условного нерасцепления

С целью обозначения первой области на оси абсцисс графика выбрано значение 1,13 I/I ном. Его называют точкой условного нерасцепления. Ниже этих токов отключение автоматического выключателя не должно происходить.

При ее достижении автоматические выключатели с номинальным значением токов до 63 ампер должны отключаться через 1 час, а с большими номиналами — через два.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Местоположение точки условного расцепления в обязательном порядке указывается на графике ВТХ.

Линия токов условного расцепления

Точка на оси абсцисс с величиной 1,45 I/I ном — это второе граничное значение зоны токов условного расцепления и нерасцепления силовых контактов.

Время токовая характеристика

Время токовая характеристика автоматического выключателя

Точка 1,45 I/I ном характеризует токи условного расцепления, она тоже обозначается на всех графиках ВТХ. При достижении подключенной к автомату нагрузки такой величины он должен отключиться за время:

Вышеприведённый график показывает, что у выбранного автоматического выключателя время отключения аварийного режима из холодного состояния составляет 1 час, а при его нагреве может уменьшиться вплоть до 40 секунд.

Практическое применение параметров ВТХ

Анализ использования время токовой характеристики автоматических выключателей по токам условного расцепления силовых контактов позволяет учитывать длительность протекания перегрузок в подключенной электрической схеме. Это важно делать потому, что они могут повредить оборудование.

Например, при выборе автомата с номиналом на 16 ампер и нахождении его в холодном состоянии ток условного расцепления в 1,45∙16=23,2 ампера будет действовать на подключенную электропроводку в течение одного часа. Этого времени вполне достаточно для того, чтобы перегреть изоляцию медных проводов сечением 1,5 мм кв и вывести ее из строя, создать условия для возникновения пожара. А случаи защиты таких жил, да и алюминиевых на 2,5 мм кв, подобными автоматами еще часто встречаются на практике.

Чтобы исключить подобные ситуации рекомендуется внимательно анализировать время токовую характеристику автоматических выключателей применительно к подключенной к ним нагрузке. Для облегчения их выбора создана таблица соответствия номинальных токов и площадей поперечного сечения медных жил кабелей и проводов.

Время токовая характеристика

Таблица выбора автоматических выключателей по номинальному току и сечению жил кабельной линии

Производители автоматических выключателей всю свою продукцию проверяют на соответствие с принятыми стандартами. Основные требования к автоматам изложены в ГОСТ Р 50345—2010. Однако на некоторых участках время токовые характеристики у каждого завода могут незначительно отличаться. Эту особенность необходимо учитывать при выборе определенной модели и ее проверках.

Типы время токовых характеристик автоматических выключателей

Защиты автоматов могут создаваться с различным назначением для условий эксплуатации. По этим показателям графики их ВТХ обладают разными границами срабатывания по времени. Это позволяет их отстраивать по селективности, избегать ложных отключений оборудования. Автоматические выключатели выпускаются для бытового или промышленного использования.

Время токовая характеристика

Виды время токовых характеристик автоматических выключателей

Бытовые автоматы классифицируют тремя группами В, С и D:

Автоматические выключатели типа В являются более чувствительными. Ими принято защищать оконечные потребители внутри квартир и домов. А в качестве вводного автомата лучше устанавливать те, которые относятся к типу С.

Качество состояния электропроводки и величина сопротивления петли фаза-ноль может влиять на выбор автоматического выключателя. Старая изоляция с высоким содержанием токов утечек и завышенными показателями петли способны ухудшить условия срабатывании автомата типа С или привезти к его отказу. В таких ситуациях применяют класс В.

Промышленные автоматы классифицируют тремя группами:

Среди производителей стран Европы встречаются модели автоматов с классом А, который имеет границу кратности токов 2÷3 Iном.

Все эти особенности необходимо учитывать при выборе конструкции автоматического выключателя и его проверках. Автоматы, обозначенные одним и тем же номиналом, в зависимости от типа время токовой характеристики, обладают разными временами срабатывания.

Источник

Плавкие предохранители

Плавкий предохранитель представляет собой однополюсный коммутационный аппарат, предназначенный для защиты электрических цепей от сверхтоков; действие его основано на плавлении током металлической вставки небольшого сечения и гашении образовавшейся дуги.

Ценными свойствами плавких предохранителей являются:

  • простота устройства и, следовательно, низкая стоимость;
  • исключительно быстрое отключение цепи при КЗ;
  • способность предохранителей некоторых типов ограничивать ток КЗ.

Следует, однако, указать, что:

  • характеристики предохранителей таковы, что они не могут быть использованы для защиты цепей при перегрузках;
  • избирательность отключения участков цепи при защите ее предохранителями может быть обеспечена только в радиальных сетях;
  • автоматическое повторное включение цепи после ее отключения предохранителем возможно только при применении предохранителей многократного действия более сложной конструкции;
  • отключение цепей плавкими предохранителями связано обычно с перенапряжениями;
  • возможны однополюсные отключения и последующая ненормальная работа участков системы.

Поэтому в электроустановках свыше 1 кВ предохранители имеют ограниченное применение; их используют в основном для защиты силовых трансформаторов, измерительных трансформаторов напряжения и статических конденсаторов.

Плавкий предохранитель состоит из следующих основных частей: изолирующего основания или металлического основания с изоляторами, контактной системы с зажимами для присоединения проводников, патрона с плавкой вставкой. Большинство предохранителей имеет указатели срабатывания той или иной конструкции.

Предохранители характеризуют номинальным напряжением, номинальным током и номинальным током отключения. Следует различать номинальный ток плавкой вставки и номинальный ток предохранителя (контактной системы и патрона). Последний равен номинальному току наибольшей из предназначенных к нему вставок. Для предохранителей переменного тока с номинальным напряжением от 3 до 220 кВ включительно установлены следующие значения номинальных токов:

Номинальные токи предохранителей, А. 8; 10; 20; 32; 40; 50; 80; 160; 200; 320; 400

Номинальные токи плавких вставок, А. 2; 3,2; 5; 8; 10; 16; 20; 32; 40; 50; 80; 160; 200; 320; 400

Номинальные токи отключения, кА. 2,5; 3,2; 4; 5; 6,3; 8; 10; 12,5; 16; 20; 25; 31,5; 40

Под номинальным током отключения следует понимать наибольшее допускаемое действующее значение периодической составляющей тока КЗ, отключаемого предохранителем при определенных условиях. Отечественные аппаратные заводы выпускают плавкие предохранители для напряжений до 110 кВ включительно.

Читайте также:  Расчет электрического двигателя постоянного тока

Наибольшая температура частей предохранителя, заряженного любой из предназначенных для него плавких вставок, не должна превышать значений, указанных в табл.1 при температуре воздуха +40°С.

Таблица 1

Наибольшие допустимые температуры частей предохранителей

Наибольшие допустимые температуры частей предохранителей

Защитные характеристики плавких предохранителей

Защитные характеристики представляют собой зависимости времени плавления tпл или времени отключения цени tот от соответствующих значений тока, неизменного во времени (рис.1).

Примерный вид защитных характеристик плавких предохранителей

Рис.1. Примерный вид защитных характеристик плавких предохранителей

Интервалы времени установлены в пределах от 0,01 с до 1 ч. Защитные характеристики предохранителей необходимы для координации их действия с действием других предохранителей и выключателей. Они могут быть получены только при испытании и сообщаются заводами-изготовителями по запросам. Как видно из рисунка, по мере увеличения номинального тока плавкой вставки характеристики смещаются вправо. Значение тока, при котором плавкая вставка предохранителя плавится в течение 1 ч, должно быть более 130% и менее 200% номинального тока вставки.

Коммутационная способность предохранителей

Предохранитель должен отключать при наибольшем рабочем напряжении любой ток в пределах от тока, плавящею вставку в течение 1 ч, до номинального тока отключения независимо от момента начала КЗ, т.е. при любой асимметрии тока. При этом не должны иметь место разрушения патрона или повреждения частей предохранителя.

Газогенерирующие плавкие предохранители

Газогенерирующие плавкие предохранители (их называют также стреляющими предохранителями) предназначены для наружной установки в устройствах 35 и 110 кВ.

Патрон газогенерирующего плавкого предохранителя типа ПВТ-35

Рис.2. Патрон газогенерирующего плавкого предохранителя типа ПВТ-35

На рис.2 показан патрон предохранителя типа ПВТ-35 (предохранитель выхлопной для защиты силовых трансформаторов и линий напряжением 35 кВ). В корпус патрона 1 помещены трубки 2 и 3 из винипласта, соединенные между собой стальным патрубком 4, а также плавкая вставка 5, прикрепленная одним концом к токоведущему стержню 6, а вторым — к гибкому проводнику 7 с наконечником 8.

Газогенерирующий плавкий предохранитель типа ПВТ-35

Рис.3. Газогенерирующий плавкий предохранитель типа ПВТ-35

Патрон устанавливается на основании предохранителя (рис.3), состоящем из цоколя 1, двух опорных изоляторов 2 с головками — верхней 3 и нижней 4 с зажимами для крепления проводников. На нижней головке укреплен контактный нож 5, снабженный пружиной и сцепленный с наконечником патрона. При перегорании плавкой вставки контактный нож освобождается и, откидываясь под действием пружины, тянет за собой гибкий проводник. Под действием дуги стенки винипластовых трубок выделяют газ, давление в патроне повышается и дуга гасится в потоке газа, вытекающего из патрона через нижнее отверстие, а также через клапан бокового отверстия патрубка. Срабатывание предохранителя сопровождается звуковым эффектом, похожим на ружейный выстрел. Гибкий проводник выбрасывается из патрона. Между контактным ножом и концом трубки образуется воздушный промежуток, обеспечивающий изоляцию в месте разрыва. Номинальный ток отключения предохранителя типа ПВТ-35 составляет 3,2 кА.

Кварцевые предохранители

Кварцевые предохранители изготовляют для напряжений 6, 10 и 35 кВ для внутренней и наружной установки. Они относятся к группе токоограничивающих предохранителей.

Патрон кварцевого предохранителя типа ПКТ-10

Рис.4. Патрон кварцевого предохранителя типа ПКТ-10

Патрон предохранителя типа ПКТ для напряжений 3-35 кВ (рис.4) представляет собой фарфоровую или стеклянную трубку 1, плотно закрытую металлическими колпачками 2. Внутри трубки помещена плавкая вставка 3 в виде одной или нескольких параллельно включенных тонких медных проволок. В нижнем колпачке предусмотрен указатель срабатывания предохранителя 4. Патрон заполнен мелким кварцевым песком.

Длина проволок и, следовательно, длина патрона определяются номинальным напряжением. Поскольку градиент восстанавливающейся электрической прочности промежутка в кварцевом песке относительно невелик, длина проволоки должна быть велика. Чтобы поместить ее в патроне, приходится навивать проволоку винтообразно.

Характеристики тугоплавких вставок из меди (температура плавления 1080°С) могут быть улучшены напайкой капель олова или свинца, температура плавления которых значительно ниже (соответственно 200 и 327°С). При расплавлении металла напайки он растворяет в себе медь, вследствие чего вставка быстро разрушается при температуре значительно более низкой, чем температура плавления основного материала вставки.

Свойства материала, наполняющего патрон токоограничивающего предохранителя, существенно влияет на работу последнего.

Наполнитель должен удовлетворять следующим требованиям:

  • отводить тепло от плавкой вставки в нормальном рабочем режиме;
  • не выделять газа под действием высокой температуры дуги;
  • обладать достаточной электрической прочностью после разрыва цепи.

Как показал опыт, этим требованиям в наибольшей мере отвечает кварцевый песок.

Процесс отключения цепи токоограничивающим предохранителем при КЗ протекает следующим образом. При большом токе тонкая проволока плавится и испаряется в течение долей полупериода почти одновременно по всей длине. Зажигается дуга. Вследствие высокой температуры газа в канале дуги образуется местное давление (давление в патроне практически не повышается).

Ионизованные частички металла выбрасываются в радиальном направлении в зазоры между песчинками кварца. Здесь они быстро охлаждаются и деионизуются. Сопротивление дуги увеличивается настолько быстро, что ток резко снижается, не достигнув своего максимального значения, а напряжение на дуговом промежутке повышается (рис.5).

Осциллограммы тока и напряжения при отключении предохранителем типа ПКТ тока 20 кА при напряжении 6 кВ

Рис.5. Осциллограммы тока и напряжения
при отключении предохранителем типа ПКТ
тока 20 кА при напряжении 6 кВ

Как видно из осциллограммы, напряжение у зажимов предохранителя превышает напряжение сети вследствие появления ЭДС самоиндукции, направленной согласно с напряжением сети. Коммутационные перенапряжения, возникающие при отключении цепи плавкими предохранителями, не должны превышать следующих значений:

Номинальное напряжение, кВ. 3..6..10..20..35

Наибольшее допустимое перенапряжение по отношению к земле, кВ. 16..26..40..82..126

Для ограничения перенапряжений принимают различные меры: применяют вставки ступенчатого сечения по длине, что затягивает процесс их плавления и удлинения дуги; параллельно основным рабочим вставкам включают вспомогательные вставки с искровым промежутком. В последнем случае при расплавлении рабочих вставок и резком повышении напряжения пробивается искровой промежуток вспомогательной вставки, которая также сгорает. Максимальное напряжение при этом уменьшается.

Токоограничивающая способность кварцевых предохранителей

Токоограничивающая способность кварцевых предохранителей характеризуется зависимостью наибольшего мгновенного значения пропускаемого предохранителем тока от периодической составляющей тока КЗ. Характер этой зависимости показал на рис.6.

Характеристики токоограничения кварцевых предохранителей

Рис.6. Характеристики токоограничения кварцевых предохранителей

Наклонная прямая iуд дает значение ударного тока, соответствующего току Iп0 при отношении X/R=15,7 (Тa=0,05с). Наклонные прямые, обозначенные imax, определяют наибольшие мгновенные значения тока, пропускаемого предохранителями с номинальными токами плавких вставок Iном1, Iном2, Iном3 и т.д. Как видно из рисунка, ограничение тока имеет место при отключаемом токе Iп0, превышающем некоторое минимальное значение, зависящее от номинального тока вставки. Чем меньше последний, тем заметнее токоограничивающее действие предохранителя.

Кварцевые предохранители для защиты измерительных трансформаторов напряжения типа ПКН имеют неограниченную отключающую способность и могут быть установлены в РУ 6, 10, 35 кВ станций, подстанций большой мощности. Они отличаются от обычных кварцевых предохранителей типа ПК материалом плавкой вставки, изготовляемой из константановой проволоки с четырехступенчатым сечением. При КЗ плавление проволоки происходит ступенями. При этом сопротивление четвертой ступени (относительно большого сечения) служит в основном для ограничения тока КЗ до значений, соответствующих номинальному току отключения предохранителей типа ПК.

Выбор плавких предохранителей

При выборе плавких предохранителей руководствуются следующими условиями.

1) Номинальное напряжение предохранителя должно соответствовать поминальному напряжению установки.

2) Номинальный ток вставки должен быть выбран так, чтобы она не расплавлялась в утяжеленном режиме, когда рабочий ток имеет наибольшее значение. Вставка не должна также плавиться в переходных режимах, например при включении силового трансформатора, когда броски намагничивающего тока достигают 8-10-кратного значения номинального тока трансформатора. У измерительных трансформаторов напряжения бросок намагничивающею тока достигает 150Iном. Наконец, номинальный ток вставки должен быть выбран так, чтобы обеспечить избирательности отключения при КЗ.

3) Номинальный ток отключена предохранителя не должен быть меньше периодической составляющей тока КЗ (действующего значения за первый период), т.е. Iоткл.ном≥Iп0

Значение наибольшего мгновенного тока, пропускаемого токоограничивающими предохранителями, не должно превышать допустимых токов аппаратов в защищаемой части сети.

Источник

Как правильно подобрать плавкую вставку (предохранитель)|Contact-pro.ru

Выбирайте всегда надежные плавкие вставки (предохранители).

Предохранители были первым типом защиты, который использовался, и им до сих пор находят место во многих технических решениях. Несмотря на то, что они не обладают гибкостью настройки и отключающей способности как у автоматического выключателя, они, тем не менее, являются надежными, высокопроизводительными устройствами с точки зрения их способности отключать очень высокие токи короткого замыкания.

Патрон предохранителя вставлен в защищаемую цепь. В случае перегрузки по току цепь автоматически разрывается за счет плавления токопроводящего элемента предохранителя, который имеет определенный номинал, внутри патрона. Кремнезем в корпусе картриджа поглощает очень высокую энергию за счет плавления и стеклования. В отличие от автоматического выключателя, патрон предохранителя повреждается в результате неисправности и подлежит замене. Патроны предохранителей соответствуют стандарту IEC 60269-1. Они бывают разных форм и размеров. В низковольтных электроустановках в основном используются цилиндрические патроны и патроны лопастного типа с номинальным током 0,5-1250 А.

Патроны предохранителей устанавливаются в разъединители, держатели предохранителей или просто на основания.

Давайте рассмотрим 8 основных характеристик по которым мы без проблем подберем необходимый нам предохранитель

1. Тип предохранителя

Предохранители обозначаются двумя буквами в соответствии с их категорией применения. В установках низкого напряжения в основном используются предохранители типа gG и aM.
Предохранитель gG
Плавкие вставки gG предназначены для общего использования и защищают оборудования от низких и высоких перегрузок и, конечно же, от коротких замыканий. Они отмечены черным цветом.
Предохранители aM
Плавкие вставки aM используются с электродвигателями и защищают от сильных перегрузок и коротких замыканий. Они рассчитаны на противодействие некоторым временным перегрузкам (например запуск двигателя).

Поэтому эти картриджи должны использоваться вместе с устройством тепловой защиты для защиты от небольших перегрузок. Они отмечены зеленым цветом.

2. Номинальные токи и напряжения.

Номинальный ток может проходить через предохранитель бесконечно без срабатывания предохранителя или чрезмерного повышения температуры. Номинальное напряжение — это напряжение, при котором этот предохранитель может использоваться. Давайте объясним значение букв, используемых для категорий приложений.
Первая буква указывает на основную операцию:
a (связанный) — предохранитель должен быть связан с другим устройством защиты, потому что он не может устранить повреждения ниже указанного уровня. Он обеспечивает только защиту от короткого замыкания.
g (общий) — он устраняет все повреждения между самым низким током предохранителя (даже если плавление элементов предохранителя занимает 1 час) и отключающей способностью. Обеспечивает защиту от короткого замыкания и перегрузки.
Вторая буква указывает на категорию защищаемого оборудования:
G = Защита кабелей и проводов
M = Защита цепей двигателя
R = Защита полупроводников
S = Защита полупроводников
Tr = Защита трансформаторов
N = Защита проводников в соответствии со стандартами Северной Америки
D = предохранитель с выдержкой времени для защиты цепей двигателя в соответствии с североамериканскими стандартами.

3. Обычные токи неплавкого и плавкого предохранителя (плавкой вставки).

Следует различать два условных тока: неплавкий и плавкий.

Обычный ток неплавкого предохранителя (Inf) — это значение тока, которое патрон предохранителя может выдержать в течение обычного времени без плавления.
Обычный ток предохранителя (If) — это значение тока, при котором патрон предохранителя плавится до истечения условного времени.

В приведенном выше примере (плавкая вставка 100 А gG):

Условное время = 2 часа
Inf = 1,3
In = 1,6

4. Рабочая зона предохранителя

Определенная стандартами рабочая зона используется для определения времени срабатывания предохранителя в зависимости от тока, проходящего через него. Важно знать рабочие характеристики предохранителя, чтобы рассчитать селективность различных защитных устройств, установленных последовательно.

«Для плавкой вставки 100 А, 22 × 58 gG перегрузка 300 А расплавит картридж за 40 с»

5. Отключающая способность предохранителя (плавкой вставки)

Отключающая способность должна быть по крайней мере равной предполагаемому току короткого замыкания, который может возникнуть в точке установки предохранителя. Чем выше отключающая способность, тем лучше предохранитель защищает установку от коротких замыканий высокой интенсивности.
Предохранители HBC (высокая отключающая способность) ограничивают короткое замыкание, которое может достигать более 100 000 А (действующее значение).

Читайте также:  Схемы стабилизаторов напряжения с ограничением тока

6. Ограничение тока предохранителя (плавкой вставки)

Ограничение тока может изменяться в зависимости от условий короткого замыкания (интенсивность, cos ϕ, начальный угол короткого замыкания ψ). Кривые ограничения картриджей представляют собой максимальные ограниченные значения тока, которые могут быть достигнуты в самых неблагоприятных условиях.

Пример: При предполагаемом коротком замыкании 10000 А (или 10 кА) с учетом максимальной асимметрии тока короткое замыкание может достичь теоретического максимального значения 2,5 × Irms, то есть пикового значения 25 кА.
Цилиндрический патрон предохранителя gG на 100 А ограничивает первую волну тока пиком 8000 А, то есть примерно 30% от предполагаемого максимального значения. Таким образом, деструктивные электродинамические эффекты снижаются в 10 раз ((8 000/25 000) 2) от максимального значения.

Чем выше ожидаемый ток короткого замыкания, тем выше коэффициент ограничения.

Например, при коротком замыкании 100 000 A (среднеквадратичное значение), т. Е. 250 000 A пиковое значение, картридж 100 A gG ограничивает этот ток до 15 000 A пикового значения, т. Е.

Ограничение до 6% от предполагаемого максимального тока и ограничение до 0,36% от предполагаемого максимума. электродинамические эффекты.
Важность ограничения мощности
Короткое замыкание опасно как с точки зрения электродинамических, так и тепловых эффектов:
Деструктивные электродинамические эффекты зависят от квадрата пикового тока, достигаемого во время короткого замыкания, и вызывают механическое повреждение изоляции проводников.
Деструктивные тепловые эффекты зависят от тепловой энергии, рассеиваемой во время короткого замыкания, и могут вызвать ожог изоляции проводов. Патроны с предохранителями максимально ограничивают оба этих эффекта.

7. Термическое напряжение предохранителя (плавкой вставки)

Короткое замыкание вызывает выделение значительного количества энергии. Патрон предохранителя ограничивает эту энергию до гораздо более низкого значения, обычно известного как ограниченное тепловое напряжение, выражаемое в A2s.
Почему необходимо ограничивать тепловую нагрузку?
Если энергия, выделяемая при коротком замыкании, не ограничена, это может быстро привести к полному или частичному разрушению оборудования. Термическое напряжение определяется двумя основными параметрами:
Cos ϕ: чем ниже, тем больше энергия
Напряжение: чем выше напряжение, тем больше энергия
Патроны с предохранителями значительно ограничивают эту энергию.

Например, для среднеквадратичного асимметричного короткого замыкания 10 кА при 230 В cos ϕ = 0,1 могло бы развиться, если бы картриджа не было, на нескольких волнах тока. Только для первой волны термическое напряжение может достигать 4 000 000 А2. При тех же условиях неисправности картридж на 100 А gG ограничит тепловое напряжение до 78 000 А2, то есть 1,95% от значения только на первой волне ожидаемого тока.

Разница между термическими напряжениями перед дуговым и дуговым разрядом
Предохранитель прерывает короткое замыкание в два этапа: до дуги и затем до дуги. Скажем пару слов о каждом этапе:
Термическое напряжение перед дуговым разрядом соответствует минимальной энергии, необходимой для того, чтобы плавкий элемент картриджа начал плавиться. Важно знать это тепловое напряжение, чтобы определить селективность при коротком замыкании между несколькими последовательно включенными системами защиты.
Термическое напряжение дуги соответствует энергии, ограниченной между концом предварительного дугового разряда и полным разрывом.
Сумма термических напряжений дугового разряда и предварительного дугового разряда дает общее термическое напряжение.

8. Селективность-избирательность предохранителя (плавкой вставки)

Ток обычно проходит через несколько устройств защиты последовательно. Эти устройства рассчитываются и распределяются в соответствии с различными защищаемыми цепями. Избирательность есть, когда работает только устройство, защищающее неисправную цепь.
пример

Только картридж на 25 А сработал при неисправности линии, которую он защищает. Если бы картридж на 100 А или даже картридж на 400 А также работал (неправильная селективность), вся установка вышла бы из строя.

Источник

Высоковольтные предохранители

Высоковольтные предохранители используются для защиты электрооборудования электрических сетей напряжением выше 1000 В от токов короткого замыкания и токов недопустимых перегрузок.
Основными техническими характеристиками предохранителей являются номинальное напряжение, номинальный длительный ток, зависимость времени плавления вставки от тока. Отключающую способность предохранителей характеризуют номинальной отключаемой мощностью. Защитным элементом предохранителя является плавкая вставка, включенная последовательно в электрическую цепь защищаемой сети.
Предохранители, обладающие способностью резко уменьшать ток в цепи при коротком замыкании, называются токоограничивающими . При прохождении через плавкую вставку токов короткого замыкания или длительного тока перегрузки она чрезмерно перегревается и плавится, переходя сначала в жидкое, а затем в газообразное состояние. В процессе расплавления металла вставки между контактами предохранителя образуется дуга. Длительность горения и скорость гашения электрической дуги внутри предохранителя зависят от конструкции предохранителя и правильности выбора плавкой вставки. После гашения дуги электрическая цепь полностью разрывается.
Время перегорания плавкой вставки зависит от величины проходящего через нее тока и называется защитной или токовременной характеристикой плавкой вставки, которая служит для определения выдержки времени отключения аварийных токов, а также расчетов селективной работы предохранителей и релейной защиты электроустановки.
Ток, плавящий вставку, определяется конструкцией предохранителя, физическими данными самой плавкой вставки (материалом, формой, длиной и поперечным сечением) и температурой окружающего воздуха.
На токовременную характеристику предохранителя влияет также состояние плавкой вставки. Если использовать вставку с оксидной пленкой, у которой вследствие этого уменьшилось сечение плавящегося элемента из-за длительного хранения в ненормальных условиях, то характеристики вставки окажутся измененными.
Плавкая вставка может работать длительное время, если через нее проходит номинальный или меньший электрический ток. При прохождении через предохранитель рабочего тока вставка нагревается, но структура металла не меняется.
Номинальным током плавкой вставки называется ток, который вставка способна выдержать, не расплавляясь и не перегорая длительное время, а номинальным током предохранителя — ток, на который рассчитаны его токоведущие части. Значение номинального тока указывают на токоведущих частях предохранителя и на контактных частях плавких вставок.
Важными показателями предохранителей являются их надежность, стабильность и избирательность, т. е. плавкая вставка предохранителя должна длительное время работать при протекании по ней номинального тока, не перегорать при кратковременных перегрузках, надежно отключать предельный ток без разрушения самого предохранителя и отключать только тот участок электрической цепи при возникновении в любой ее точке короткого замыкания, который защищает данный предохранитель. В этом случае сработать должен тот предохранитель, который расположен ближе к месту замыкания.
Ток, при котором плавкая вставка сгорает в момент достижения ею установившейся температуры, называется пограничным . Если пограничный ток по значению близок к номинальному или несколько больше его, плавкая вставка предохранителя не перегорает при прохождении через нее номинального тока.
Предельно отключаемый ток предохранителя — это наибольший ток, который способен отключить предохранитель при перегорании его плавкой вставки.
Предельно отключаемый ток плавкой вставки должен быть равен или больше максимального расчетного тока короткого замыкания в цепи, защищаемой предохранителем. Если выбор предохранителя произведен неправильно, то длительность горения дуги при перегорании плавкой вставки увеличивается и может привести к разрушению патрона предохранителя.
Разрывной мощностью предохранителя называется наибольшая мощность короткого замыкания, которую способен разорвать предохранитель при перегорании плавкой вставки без разрушения патрона предохранителя.
Защищаемые электрические цели укомплектовываются предохранителями на соответствующие электроустановкам номинальные напряжения и токи. Применение предохранителей, предусмотренных на меньшее номинальное напряжение, может привести к короткому замыканию и разрушению предохранителя. Если использовать предохранитель на большее номинальное напряжение и ток, то он нe обеспечит необходимой защиты и нарушит селективную работу аппаратов и реле защиты, так как имеет другие, отличные от защищаемой цепи характеристики. Для надежной работы предохранителя необходимо, чтобы токовременная характеристика era плавкой вставки была несколько ниже характеристики защищаемого объекта.

В закрытых распределительных устройствах напряжением 6 и 10 кВ применяются предохранители ПК и ПКТ.
Предохранитель ПК (рис. 1) относится к токоограничивающим предохранителям и представляет собой патрон — фарфоровую трубку 8, заполненную мелким кварцевым песком, внутри которой помещена плавкая вставка 10, На концах фарфоровой трубки 8 закреплены латунные колпачки 7 с крышками 6. Контакты патронов располагаются на двух опорных изоляторах 5, закрепленных на стальной плите 1. Контакты 2 снабжены замками, удерживающими патрон от выпадания при возникающих при прохождении токов короткого замыкания электродинамических усилиях. Для присоединения шин распределительного устройства к предохранителю служит хвостовик 4 контакта 2.
Плавкая вставка 10 состоит из медных проволок, покрытых слоем серебра и намотанных на керамический сердечник (стержень) 9 для номинальных токов до 7,5 А. При токах выше 7,5 А медные проволоки имеют вид спиралей и помещены непосредственно внутрь фарфоровой трубки. Проволока плавкой вставки на номинальные токи до 7,5 А по всей длине имеет один диаметр, а на токи выше 7,5 А — разные диаметры, т. е. в этом случае используется проволока ступенчатого сечения, что существенно улучшает характеристики предохранителей. Во время процесса срабатывания предохранителя плавление и испарение таких вставок под действием больших токов происходит неодновременно: сначала плавится участок вставки с проволокой меньшего сечения, а затем-с проволокой большего сечения. Вследствие этого уменьшается длина разрываемого участка и снижается перенапряжение, которое вызывается перегоранием плавкой вставки. Эта конструкция плавкой вставки предохранителя ПК позволяет ограничить перенапряжение до 2,5-кратного значения рабочего напряжения.

p133_1_01

Рис. 1. Высоковольтный предохранитель

а — общий вид (ПКТ-103), 6 — патроны предохранителя на керамическом стержне (слева) и без стержня (справа), 1 — плита (под опорные изоляторы 5 не показана), 2 — контакт с замком, 9 — патрон, 4 — хвостовик контакта, 5 — опорный изолятор, 6 — крышка, 7 — латунный колпачок, 8 — фарфоровая трубка (кожух), 9 — стержень, 10 — плавкая вставка, 11 — указательная проволока, 12 — указатель срабатывания, 13 — оловянные шарики

Обозначение

В обозначении предохранителей указывают: их тип (ПК — с мелкозернистым кварцевым наполнителем), назначение (Т — для защиты силовых трансформаторов, К — конденсаторов, Д — электродвигателей, Н — трансформаторов напряжения), конструктивное исполнение (101 — для предохранителей с номинальным током до 32 А, 102 — для предохранителей напряжением 6 кВ и током от 40 до 80 А, 10 кВ и от 40 до 50 А, 103 — для предохранителей 6 кВ и от 100 до 160 А, 10 кВ и от 80 до 100 А), номинальное напряжение, кВ, номинальный ток, А (он равен току плавкой вставки), номинальный ток отключения, кА, климатическое исполнение и категорию размещения. Например, предохранитель с мелкозернистым кварцевым наполнителем, предназначенный для защиты силового трансформатора, конструктивного исполнения 102, на номинальные напряжение 10 кВ, ток 40 А и ток отключения 20 кА, для размещения в умеренном климате и внутренней установки обозначают ПКТ 102-10-40-20У3.
Для мачтовых трансформаторных подстанций применяют предохранители ПКТ соответствующего климатического исполнения (У, ХЛ, Т) и 1-й категории размещения. Их патроны выполняют водонепроницаемыми во избежание отсыревания внутренних частей.
Для защиты измерительных трансформаторов напряжения на напряжение 3 -10кВ применяют предохранители ПKH-10, не имеющие указательного устройства об их срабатывании.

В предохранителях ПК плавкую вставку изготовляют из нескольких параллельных проволок, что значительно улучшает условия теплоотдачи и уменьшает общее сечение вставки. В результате этого улучшаются условия охлаждения и гашения электрической дуги, которая возникает в нескольких параллельных каналах при плавлении и испарении проволок, что влечет к разрыву электрической цепи. Кроме того, на проволоки плавких вставок напаяны оловянные шарики 13, служащие для снижения температуры плавления проволок за счет «металлургического эффекта». Так как температура плавления олова значительно ниже температуры плавления материала вставки, оно плавится раньше и в расплавленном виде проникает в металл проволоки, снижая тем самым на этом участке температуру плавления вставки предохранителя.
Патрон предохранителя ПК необходимо заполнять сухим, чистым мелкозернистым песком с содержанием кварца около 99%, что обеспечивает быструю деионизацию электрической дуги в пространстве между зернами кварца и проникновение паров металла вставки в песок.
Предохранители ПК допускают многократную перезарядку дугогасящего патрона после его срабатывания, при этом спекшийся кварцевый заполнитель заменяют. При замене плавкой вставки следует точно соблюдать длину проволоки, соответствующую данному типу предохранителя, а также расстояние между отдельными проволоками и стенками патрона. Несоблюдение длины проволоки и расстояний приводят к разрушению предохранителя. Трубки с плавкими предохранителями герметически запаивают.
Предохранитель ПК является токоограничивающим защитным аппаратом, так как ток короткого замыкания обрывается после расплавления и испарения металла не в момент его естественного прохождения через нулевое значение, а значительно раньше, чем он успевает достигнуть своего максимального значения.
Предохранители для внутренней установки снабжены указателем срабатывания 12, который состоит из металлической втулки, пружины, указательной проволоки 11 и головки с крючком. Втулка со вставленной в нее пружиной закреплена на крышке патрона. Один конец пружины прикреплен к головке указателя крючком, а другой присоединен к втулке. В нормальном рабочем состоянии пружина сжата. При перегорании плавкой вставки перегорает и указательная проволока, освобождая пружину, которая выбрасывается вместе с головкой из предохранителя, по чему судят о том, что вставка предохранителя перегорела.
Наибольшая отключаемая мощность предохранителей ПК составляет 300 MBА. Они выпускаются на следующие номинальные токи: 2; 3,2; 5; 8; 10; 16; 20; 31,5; 40; 50; 80; 100; 160; 200; 315; 400 А.

Читайте также:  Допустимые потери напряжения при постоянном токе

Конструктивно предохранители, изготовленные на разные номинальные напряжения, отличаются длиной патрона, а на разные номинальные токи — не только длиной патрона, но и диаметрами патронов и колпачков. При номинальном напряжении 6 кВ на номинальный ток 75 А и выше и при напряжении 10 кВ на ток 50 А и выше патроны предохранителей делают спаренными. Предохранители на токи выше 200 А при напряжении 6 кВ и выше 150 А при напряжении 10 кВ имеют по четыре патрона на каждую фразу.

Ремонт предохранителей

Ремонт предохранителей ПКТ и ПКН заключается в проверке целости плавкой вставки, очистке контактных поверхностей, проверке действия замка и указателя срабатывания (для предохранителей ПКТ). Указатель срабатывания при нажатии пальцем на его головку должен свободно переместиться, а при опускании пальца — возвратиться на место. Кроме того, проверяют плотность и полноту засыпки патронов кварцевым песком (при встряхивании патронов не должно быть слышно шума).
Необходимо также контролировать правильность установки предохранителя (по номинальному току). При обнаружении обрыва плавкой вставки патроны заменяют и отправляют в мастерские для перезарядки.
Пластинчатые предохранители низкого напряжения при перегорании или обнаружении на них окалины меняют, трубчатые при перегорании заменяют и отправляют на перезарядку.

p133_1_00

УСТАНОВОЧНЫЕ РАЗМЕРЫ ПАТРОНОВ

Выбор предохранителей для защиты установок трехфазного переменного тока 6-35 кв
Номинальный ток установки, а Номинальный ток плавкой вставки предохранителя, а Номинальная трехфазная мощность, ква, защищаемой установки при напряжении, кв
6 10 35
0,5
1,0
1,9
3,0
5,0
8,0
10
14,5
20
30
54
70
100
145
210
2,0
3,0
5,0
7,5
10
15
20
30
40
50
75
100
150
200
300
5
10
20
30
50
75
100
135
180
320
560
750
1 000
1 500
2 000
10
20
30
50
75
100
180
240
320
560
750
1 000
1 500
2 500

50
100
180

320
560

1 000





  • Номинальное напряжение предохранителя должно быть не менее сетевого напряжения
  • Ток включения не должен расплавить плавкий элемент быстрее 0,1 с
  • Предохранитель должен прервать минимальный ток короткого замыкания в течение 2 секунд.
  • Предохранитель должен выдержать номинальный ток In и возможные перегрузки трансформатора 1,3 -1,4 In
  • В случае, когда неизвестны условия работы и установки, рекомендуется выбрать номинальный ток предохранителя больше 1,5 In

Источник



Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

Plavkie vstavki 1

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Plavkie vstavki 2

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t

+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Plavkie vstavki vidy

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:
  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Tolshchina provoda

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:
  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11 мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:
  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Источник