Меню

Преобразование электрической энергии в механическую в двигателе постоянного тока

Электродвигатели. Преобразование энергии.

Электродвигатель – это механизм, который служит для преобразования электрической энергии в механическую. В основе принципа работы любого электродвигателя находится закон электромагнитной индукции. Обычно электродвигатель состоит из неподвижной части (статора) и ротора (или якоря), в которых создаются неподвижные или вращающиеся магнитные поля. Электродвигатели бывают самых различных типов и модификаций, широко применяются во многих отраслях человеческой деятельности, и представляют собой один из главных компонентов в механизмах и приводах самого различного назначения. ОТ характеристик электродвигателя напрямую зависит эффективность производства.

Классификация электродвигателей

Главными частями, из которых состоит Электродвигатели , являются статор и ротор. Ротор — та часть двигателя, которая вращается, а статор – которая остается неподвижной. Принцип работы электродвигателя заключен во взаимодействии вращающегося магнитного поля, создаваемого обмоткой статора и электрического тока, который находится в замкнутой обмотке ротора. Этот процесс инициирует вращение ротора в направлении поля.

Основные виды электродвигателей:

  • Двигатель переменного тока;
  • Двигатель постоянного тока;
  • Многофазный двигатель;
  • Однофазный двигатель;
  • Вентильный двигатель;
  • Шаговый двигатель;
  • Универсальный коллекторный двигатель.

Если говорить о таких электродвигателях как асинхронные электродвигатели, то они относятся к виду двигателей переменного тока. Такие двигатели бывают как однофазные электродвигатели, так и двух- и трехфазные. В асинхронных электродвигателях частота переменного тока в обмотке не совпадает с частотой вращения ротора. Процесс работы асинхронного электродвигателя обеспечивается разницей во времени генерации магнитных полей статора и ротора. Вращение ротора из-за этого задерживается относительно поля статора. Купить электродвигатель асинхронного типа можно для машин, в которых не требуются особые условия работы пускового механизма.

Виды электродвигателей по степени защищенности от внешней среды:

  • Взрывозащищенные;
  • Защищенные;
  • Закрытые.

Взрывозащищенные электродвигатели имеют прочный корпус, который если случится взрыв двигатели, предотвратит поражение всех других частей механизма и воспрепятствует возникновению пожара.

Защищенные электродвигатели при эксплуатации закрыты специальными заслонками и сетками, которые защищают механизм от попадания инородных предметов. Используются в среде, где нет повышенной влажности воздуха и примесей газов, пыли, дыма и химических веществ.

Закрытые электродвигатели имеют специальную оболочку, которая не дает проникать пыли, газам, влаге и другим веществам и элементам, которые способны причинить вред механизму двигателя. Такие электродвигатели бывают герметичными и негерметичными.

Электродвигатели siemens и электродвигатели able выпускаются в большинстве вышеперечисленных видов электродвигателей, и среди них довольно просто выбрать самый оптимальный вариант.

Электродвигатели с тормозом

Тормозные электродвигатели обычно устанавливаются на таком оборудовании, которому необходимо иметь возможность осуществить мгновенную остановку. Это может быть конвейерное или станочное оборудование, или другое оборудование, где остановка обусловлена требованиями техники безопасности. Они активно применяются в транспортных лифтах, подъемных кранах, складских укладочных машинах, прокатном и швейном оборудовании, эскалаторах, станках для дерева и металла, задвижках, прокатном оборудовании – одним словом везде, где необходима быстрая остановка системы в определенном положении и в определенное время.

Если не вдаваться в подробности, электродвигатель с тормозом представляет собой обычный промышленный асинхронный электродвигатель, в котором установлен электромагнитная тормозная система. Это обуславливает тот факт, что от обычных двигателей электродвигатель с тормозом отличается только длиной, тогда как все посадочные и соединительные элементы остаются на прежнем месте. Длина изменяется из-за необходимости установки на двигатель специального кожуха. Как и обычные двигатели, в зависимости от типа питания, электродвигатели с тормозом делятся на двигатели, питаемые переменным током, и электродвигатели, питаемые постоянным током.

Главными элементами тормозной системы электродвигателя являются:

  • Электромагнит, состоящий из корпуса, в котором находятся катушка или набор катушек;
  • Якорь, представляющий собой исполнительный элемент, или поверхность для тормозного диска;
  • Сам тормозной диск, который перемещается по зубчатой втулке, закрепленной на валу заторможенного привода или двигателя.

Когда двигатель находится в состоянии покоя, он заторможен. Пружинный нажим на якорь оказывает, в свою очередь, давление на тормозной диск, в связи с чем возникает его блокировка. Когда на катушку электромагнита подается электрический ток, возбужденный электромагнит притягивает к себе якорь, и происходит разблокировка тормоза. Нажим якоря снимается, и возникает свободное вращение вала электрического двигателя. Электродвигатели с тормозом маркируются буквой «Е», или «Е2» (для двигателей с ручной системой торможения).

Регулирование скорости вращения электродвигателя

Вопрос регулирования скорости вращения электродвигателя очень актуален, ведь снижение и повышение оборотов электродвигателя может понадобится в самых разнообразных механизмах, от бытовых приборов, таких как швейных машин или кухонной техники, до промышленных механизмов и станкового оборудования. Казалось бы, самый простой способ – просто понизить питающее напряжение электродвигателя. Это подходит для двигателей постоянного тока, регуляторы напряжения постоянного тока достаточно просты в производстве и доступны. Однако, в настоящее время основная масса приборов, механизмов и инструментов, занятых в производстве, базируются на асинхронных двигателях переменного тока. В этом случае при понижении напряжения электродвигатель резко снижает количество оборотов, теряет мощность и полностью останавливается. Как понизить обороты электродвигателя, или как увеличить их? Для регулировки скорости вращения таких электродвигателей и были разработаны частотные инверторные преобразователи, или как их чаще называют – частотники .

Область применения частотных преобразователей достаточно обширна. Они востребованы в станках и электроприводах промышленных механизмов, конвейерах, системах вытяжной вентиляции и так далее. Принцип работы частотника заключается в правиле вычисления угловой скорости вращения вала, которое включает в себя такой фактор как частота питающей сети. Таким образом, меняя частоту питания обмотки электродвигателя, можно регулировать скорость вращения ротора двигателя в прямой зависимости, таким образом уменьшить обороты электродвигателя или повысить их. Эти приборы имеют также название «инверторы», благодаря методу, при помощи которого решается задача одновременного регулирования частоты и напряжения на выходе преобразователя. Все частотные преобразователи в обязательном порядке маркируются табличками, ан которых указаны их характеристики:

  • Максимально возможная мощность электродвигателя;
  • Напряжение запитывающей сети;
  • Количество фаз (однофазный, трехфазный).

Большинство промышленных частотных преобразователей предназначены для работы в трехфазных сетях переменного тока, однако встречаются и другие модели, например частотники для однофазных двигателей.

Применение электродвигателя

Жизнь современного человека тяжело представить без такого механизма как электродвигатель. Оглянитесь вокруг – они получил практически повсеместное распространение. Сегодня они используются не только во всех отраслях промышленности, но и в транспорте, предметах и устройствах, окружающих в повседневной жизни, на работе и дома. Фены, вентиляторы, швейные машины, строительные инструменты – вот далеко не полный перечень устройств, где используются электродвигатели.

Особой надежностью отличаются именно асинхронные электродвигатели, благодаря чему они находят широкое применение в приводах металлообрабатывающих, деревообрабатывающих станков и других промышленных станков, в кузнечных прессах, грузоподъёмных машинах, лифтах, ткацких, швейных и землеройных машинах, промышленных вентиляторах, компрессорах, насосах, центрифугах, бетономешалках. Крановые электродвигатели используются в капитальном, промышленном и гражданском строительстве, в горнодобывающей, металлургической отраслях, энергетике, транспорте.

Метро, трамвай, троллейбус – все эти виды транспорта обязаны своему существованию электродвигателю. Любой офис или жилой дом сегодня невозможно представить без кондиционера или системы очистки воздуха – в них тоже применяются электродвигатели. Функционирование большинства современного оборудования невозможно без электродвигателя, в связи с чем очень многое зависит от качества и надежности этого механизма. Его поломка может привести к очень печальным результатам, вплоть до остановки производства и огромным финансовым убыткам. Следовательно, приобретать электродвигатели можно только у надёжного и проверенного поставщика, который гарантирует качество продукции.

Принцип работы электродвигателя

Принцип работы электродвигателя заключается в эффекте магнетизма, который позволяет эффективно преобразовывать электрическую энергию в механическую. Принцип преобразования энергии в разных типах электродвигателей одинаковый, для всех типов электродвигателей, но конструкция двигателей и способы контроля скорости вращающегося момента могут различаться. Всем со школьной скамьи известен простейший пример электродвигателя – когда рамка вращается между полюсами постоянного магнита. Разумеется, устройство электродвигателя, который применяется в промышленных механизмах или бытовых приборах намного сложнее. Давайте рассмотрим как работает асинхронный электродвигатель, который получил наибольшее распространение в промышленности.

Принцип работы асинхронного электродвигателя.

Принцип действия асинхронного двигателя, как и прочих, основан на использовании вращающегося магнитного поля. Скорость вращения магнитного поля принято называть синхронной, так как она соответствует скорости вращения магнита. При этом скорость вращения цилиндра принято называть асинхронной, то есть не совпадающей со скоростью вращения магнита. Скорость вращения цилиндра (ротора) отличается от синхронной скорости вращения магнитного поля на небольшую величину, называемую скольжением. Чтобы заставить заставить электрический ток создавать вращающееся магнитное поле и использовать его для вращения ротора обычно используется трехфазный ток.

Устройство электродвигателя

На полюсах железного сердечника кольцевой формы, называемого статором электродвигателя, размещаются три обмотки, сети трехфазного тока расположенные одна относительно другой под углом 120°. Внутри сердечника укреплен на оси металлический цилиндр, называемый ротором электродвигателя. Если обмотки соединить между собой и подключить их к сети трехфазного тока, то общий магнитный поток, создаваемый тремя полюсами, окажется вращающимся. Суммарный магнитный поток в тоже время будет менять свое направление с изменением направления тока в обмотках статора (полюсов). При этом за один период изменения тока в обмотках магнитный поток сделает полный оборот. Вращающийся магнитный поток будет увлекать за собой цилиндр, и мы получим, таким образом асинхронный электродвигатель.

Обмотки статора могут быть соединены «звездой», однако вращающееся магнитное поле образуется и при соединении их «треугольником». Если поменять местами обмотки второй и третьей фаз, то магнитный поток изменит направление своего вращения на обратное. Такого же результата можно добиться, не меняя местами обмотки статора, а направляя ток второй фазы сети в третью фазу статора, а третью фазу сети — во вторую фазу статора. Таким образом, изменить направление вращения магнитного поля можно переключением двух любых фаз.

Подключение электродвигателя

Статор современного асинхронного электродвигателя имеет невыраженные полюсы, т. е. внутренняя поверхность статора сделана совершенно гладкой. Чтобы уменьшить потери на вихревые токи, сердечник статора набирают из тонких штампованных стальных листов. Собранный сердечник статора закрепляют в стальном корпусе. В пазы статора закладывают обмотку из медной проволоки. Фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником», для чего все начала и концы обмоток выводятся на корпус — на специальный изоляционный щиток. Такое устройство статора очень удобно, так как позволяет включать его обмотки на разные стандартные напряжения.

Ротор асинхронного двигателя, подобно статору, набирается из штампованных листов стали. В пазы ротора закладывается обмотка. В зависимости от конструкции ротора асинхронные электродвигатели делятся на двигатели с короткозамкнутым ротором и фазным ротором. Обмотка короткозамкнутого ротора сделана из медных стержней, закладываемых в пазы ротора. Торцы стержней соединены при помощи медного кольца. Такая обмотка называется обмоткой типа «беличьей клетки». Заметим, что медные стержни в пазах не изолируются.

Асинхронный двигатель с фазным ротором (с контактными кольцами) применяется обычно в электродвигателях большой мощности и в тех случаях; когда необходимо, чтобы электродвигатель создавал большое усилие при трогании с места. Достигается это тем, что в обмотки фазного двигателя включается пусковой реостат.

Расчёт мощности электродвигателя

Выбирая электродвигатель необходимо ориентироваться на потребляемую оборудованием мощность. Определить мощность можно расчетным путем, используя следующие формулы и коэффициенты:

Читайте также:  Дуговую сварку чугуна рекомендуется вести током

Мощность на валу электродвигателя определяется по следующей формуле:

, где

Рм – потребляемая механизмом мощность;
ηп – КПД передачи.

Номинальную мощность электродвигателя желательно выбирать больше расчетного значения.

Остальные технические характеристики, необходимые для расчета мощности двигателя, можно найти в каталогах для каждого типа механизмов. При выборе электродвигателя запас должен быть небольшой мощности. При значительном запасе мощности снижается КПД привода. В электродвигателях переменного тока это приводит еще и к снижению коэффициента мощности.

Расчет пускового тока электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток:

Номинальный ток трехфазных электродвигателей переменного тока:

, где

PH – номинальная мощность электродвигателя;
UH — номинальное напряжение электродвигателя,
ηH — КПД электродвигателя;
cosφH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя. Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей.

, где

IH – номинальное значение тока;

Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Источник

Преобразование электрической энергии в механическую в двигателе постоянного тока

&nbsp Электрический двигатель — электрическая машина, которая преобразовывает электрическую энергию в механическую энергию. Когда электрический ток передают через замкнутую обмотку ротора, который находится в магнитном поле, ротор будет вращаться, и вращающееся движение передается к механизму, обеспечивая полезную механическую работу. Традиционный электрический двигатель состоит из замкнутой обмотки, которая установлена на вращающемся роторе. Ток, подаваемый углеродистыми блоками, названными щетками, входит через два проскальзывающих круга. Магнитное поле вокруг обмотки ротора, создаваемое железным основным полевым магнитом, заставляет ротор поворачиваться, когда ток течет через нее. В двигателе переменного тока, в обмотке ротора протекает ток, синхронизированный с магнитным полем статора. Вращающий момент создает движение ротора тогда, когда значение тока не начнет уменьшаться и движение не прекращается. В двигателях индукции переменного тока в обмотке ротора протекает ток, который возникает из-за электродвижущей силы, так как замкнутая обмотка ротора находится в магнитном поле. В двигателе постоянного тока, принцип действия такой же, но имеется ключ управления для переключения направление тока при каждой половине оборота вращения, чтобы поддержать постоянное направление движения ротора. В любом двигателе постоянными частями являются статор и ротор. Из-за того, что наиболее легкое управление скоростью вращения ротора имеют двигатели постоянного тока (изменяя напряжение), поэтому они используются, где необходим контроль скорости. Скорость двигателей индукции переменного тока зависит от строения двигателя и частоты тока; поэтому механическая передача должна использоваться, чтобы изменить скорость. Кроме того, различные конструкции двигателей соответствуют только одному или нескольким видам применения. Однако, двигатели индукции переменного тока более дешевы и более просты, чем двигатели постоянного тока. Чтобы получить большую гибкость, цепь ротора может быть связана с различными внешними цепями управления. Большинство бытовых приборов имеют универсальный двигатель, который работает на постоянном токе или на переменном токе. Где расход электроэнергии ограничен, скоростью двигателей переменного тока управляют с помощью специального оборудования, которое изменяет частоту энергосистемы. В Соединенных Штатах частота энергосистемы равна 60 герц (Гц), или 60 циклов в секунду. Двигатели постоянного тока «Brushless» построены обратным способом в отличие от традиционной формы. Ротор содержит постоянный магнит, а статор имеет свою обмотку. Устранение щеток в конструкции двигателей уменьшило опасность искры, и вместе с тем улучшило контроль скорости. Такие двигатели широко используются в компьютерных дисководах, магнитофонах, двигателях компакт-диска, и других электронных устройствах. Ротор синхронных двигателей вращается с синхронной скоростью вращения магнитного поля статора. Большинство эксплуатируемых двигателей — синхронные двигатели с постоянным током, проходящим через ротор.

&nbsp В большинстве электродвигателей электрическая работа обусловлена электромагнетизмом, но двигатели, работа которых основана на других электромеханических явлениях (типа электростатических сил и пьезоэлектрического эффекта) также существуют. Фундаментальный принцип, на котором базируется принцип работы электромагнитных двигателей описан законом силы Лоренца.

&nbsp Большинство магнитных двигателей являются вращательными, но линейные типы двигателей также существуют. Во вращательном двигателе вращающуюся часть (обычно внутреннюю часть) называют ротором, и постоянную часть называют статором. Ротор вращается, так как магнитное поле статора создает вращательный момент оси ротора.

Двигатели переменного тока.

Есть два фундаментальных типа двигателя переменного тока в зависимости от типа используемого ротора:
1. Синхронный двигатель, ротор которого вращается с синхронной частотой магнитного поля статора;
2. Двигатель индукции, который немного медленнее, и типично (хотя не обязательно всегда), имеет форму двигателя с «беличьей клеткой».

Принцип вращения магнитного поля, был открыт Николой Теслой в 1882 году, но до этого использовался учеными Майклом Фарадея и Джеймсом Клерком Максвелл в 1820 году. Тесла изучал это явление, чтобы спроектировать уникальный в то время двигатель индукции с двумя фазами в 1883 году. Майкл Фарадей совместно с Доливо-Добровольским изобрели первый современный ротор с «беличьей клеткой» с тремя фазами в 1890 году. Именно с началом использования этого двигателя в 1888 году начался период, который назвали второй индустриальной революцией, и при этом стало возможным эффективное распределение электрической энергии, используя систему передачи переменного тока и другие открытия Теслы в 1888 году. Первые успешные коммерческие проекты по созданию системы из трех фаз для передачи электроэнергии на большие расстояния были разработаны американским палубным судном №1 в Калифорнии.

Двигатели индукции переменного тока с тремя фазами.

Там где трехфазное электрическое снабжение является доступным, обычно используется трехфазный двигатель индукции переменного тока. Отличие однофазного снабжения от трехфазного состоит в том, что при трехфазной системе электроснабжения статор создает вращательное магнитное поле в двигателе. С помощью электромагнитной индукции, вращательное магнитное поле наводит ток в обмотке ротора, который в свою очередь настраивает магнитное поле уравновешивания, которое заставляет ротор поворачиваться в направлении, котором вращается поле. Ротор должен всегда вращаться медленнее, чем магнитное поле статора, иначе в роторе не будет поля уравновешивания. Двигатели индукции — рабочие двигатели промышленности, двигатели приблизительно до 500 кВт, которые произведены в высоко стандартизированных размерах.

Очень большие синхронные двигатели сделаны до десятков тысяч кВт и используются в роли компрессоров трубопроводов и вентиляции туннелей. Существует два типа роторов, используемых в двигателях индукции.

Роторы типа «беличья клетка»: самые распространенные двигатели переменного тока имеют ротор типа «беличья клетка», который также используют в промышленных двигателях переменного тока. «Беличья клетка» берет название от своей формы в виде кольца с обоих концов ротора, которые соединены между собой. Конструкцию делают из алюминия, который заливают между железом и он расщепляется из ротора, и только концы кольца остаются видимыми. Магнитный поток проходит через клетку ротора, и для уменьшения сопротивление она обычно лакируется. В мощных двигателях часто используют медь, чтобы уменьшить сопротивление в роторе.

В действительности, двигатель с «беличьей клеткой» может рассматриваться как трансформатор с вторичным вращением — когда ротор не вращается в синхронизации с магнитным полем, большой поток ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора. Разгруженный двигатель с «беличьей клеткой» на синхронной скорости будет только потреблять электроэнергию, чтобы поддержать скорость ротора против потерь сопротивления и трения, но как только произойдут механические увеличения груза, возникает электрический груз, который неотъемлемо связан с механическим грузом. Это подобно трансформатору, где электрический груз предварительного выбора связан с электрическим грузом второстепенно.

Общий тип двигателя с «беличьей клеткой»- заштрихованный двигатель с полюсами, небольшой стоимости, малошумящий и имеющий низкий вращающий момент. Такие двигатели не очень эффективны. За исключением заштрихованных двигателей с полюсами, большинство двигателей с «беличьей клеткой» являются эффективными.

Фактически каждая стиральная машина, посудомоечная машина, проигрыватель и т.д. используют некоторый вариант двигателя с «беличьей клеткой».

Ротор «Wound»: дополнительный проект, названный ротором «Wound»; используется в тех случаях, когда требуется изменять скорость вращения ротора. В этом случае ротор имеет то же самое число полюсов, как статор. Углеродистые щетки соединяют кольца с внешним управлением, в виде резистора, который позволяет изменять сопротивление двигателя. В определенных мощных переменных двигателях ротора «Wound» частота и подключена к электропитанию через инвертор.

По сравнению с роторами «беличьей клетки», двигатели с ротором «Wound» дороже по своей стоимости и требуют обслуживания колец и щеток, но они были стандартной формой для контроля и управления скоростью перед появлением компактных электронных устройств. Инверторы в двигателе переменной частоты могут теперь использоваться для контроля и управления скоростью вращения ротора, и двигатели ротора «Wound» становятся менее используемыми. (Двигатели с инверторами позволяют также эксплуатировать трехфазные двигатели тогда, когда существует только однофазная система электроснабжения).

Существуют несколько методов пуска трехфазных электрических двигателя. Большого потока и большого по величине начального вращающего момента можно достигнуть только при номинальном напряжении сети. Если необходимо ограничить пусковой ток (если он является большим по сравнению с уставкой защиты от короткого замыкания), то в этом случае используют катушки индуктивности, автотрансформатор, тиристоры, или другие устройства. Иногда для уменьшения пускового тока при пуске используется соединение обмотки статора в «звезду», когда ротор достигнет своей номинальной скорости вращения соединение обмотки статора, переключают в «треугольник». Этот способ обычно используют в Европе, и иногда в Северной Америке. Двигатели также могут непосредственно изменить напряжение, как требуется в соответствии с пусковыми характеристиками двигателя и нагрузки.

Этот тип двигателей является самым распространенным эксплуатируемым в качестве тяги, особенно в локомотивах, где это известно как асинхронный двигатель тяги.

Скорость вращения ротора двигателя переменного тока определена, прежде всего, частотой переменного тока и числом полюсов, согласно отношению: Ns = 120F/p, где &nbsp Ns — скорость вращения ротора двигателя (об/мин);
&nbsp F — частота переменного тока (Гц);
&nbsp p – число полюсов.

Фактическое число оборотов в минуту для двигателя индукции будет меньше на величину скольжения, чем расчетная номинальная синхронная скорость, которая увеличивается с произведенным вращающим моментом. Без нагрузки скорость будет очень близка к номинальной. При нагрузке стандартные двигатели имеют величину скольжения равную 2-3 % от номинальной скорости вращения ротора двигателя, а специальные двигатели могут иметь величину скольжения равную 7 %.

Величина скольжения двигателя переменного тока можно вычислить по формуле: S = (Ns — Nr)/Ns, где &nbsp Nr – скорость вращения ротора (об/мин);
&nbsp S – величина скольжения ротора, которая изменяется в интервале от 0 дo 1.

Например, рассмотрим типичный двигатель, который имеет четыре полюса, частоту переменного тока 60 Гц мог бы развить скорость вращения ротора равную 1725 об/мин при максимальной нагрузке, в то время как его расчетная номинальная скорость – 1800 об/мин.

Скорость в этом типе двигателя была изменена при наличии дополнительных катушек индуктивности или полюсов двигателя, который может быть включен и может изменять скорость вращения магнитного поля. Однако, последние открытия в электронике позволяют изменять частоту переменного тока для обеспечения более гладкого управление и контроля скорости вращения ротора двигателя.

Читайте также:  Ток есть бензонасос не работает

Источник

Процесс преобразования энергии в электрических машинах

Процесс преобразования энергии в электрических машинахЭлектрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели — для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции — паровой турбиной, на гидроэлектростанции — водяной турбиной.

Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.

Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.

Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле . В обмотке якоря индуцируется э. д. с. и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Об осуществлении в электрической машине энергопреобразовательного процесса

Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:

1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;

2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,

3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.

Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.

Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в «машине постоянного тока» мы имеем двустадийное преобразование энергии.

Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой «изменяющееся электрическое сопротивление», преобразуется в энергию постоянного тока.

В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя — в энергию механическую.

Роль упомянутого изменяющегося электрического сопротивления выполняет «скользящий электрический контакт», который в обычной «коллекторной машине постоянного тока» состоит из «электромашинной щетки» и «электромашинного коллектора», а в «униполярной электрической машине постоянного тока» из «электромашинной щетки» и «электромашинных контактных колец».

Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или «изменяющейся электрической индуктивности», или «изменяющейся электрической емкости», то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем «индуктивную машину», во втором — «емкостную машину».

Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование «электрическая машина», являющееся, по существу, более широким понятием.

Принцип действия электрического генератора.

Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.

Принципиальные схемы простейших генератора (а) и электродвигателя (б)

Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)

При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, — к нам.

Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.

При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, — сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.

Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.

Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.

Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию — вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.

При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;

2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.

Электрический двигатель

Принцип действия электрического двигателя.

Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.

Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.

При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,— сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;

2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Электрический двигатель

Принцип обратимости электрических машин

Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.

Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.

Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Читайте также:  Релейная защита линий постоянного тока

Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.

Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.

Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E U машина работает двигателем, при E > U — генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

Источник



Преобразователи электрической энергии в механическую. Двигатель постоянного тока. Принцип действия. Основные характеристики.

Электромеханические преобразователи – это класс устройств, созданных для преобразования электрической энергии в механическую и наоборот. Основным видом электромеханического преобразователя является электродвигатель или электрогенератор.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта). При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Индивидуальное задание. Кран-балка

Кран-балка (однобалочный мостовой кран) принадлежит к типичному оборудованию на производстве, закрытых и открытых складов, цехов. Кран-балки бывают двух видов: ручные и электрические.

ОСНОВНЫЕ ТИПЫ КРАН-БАЛОК

  • кран-балка опорная;
  • кран-балка подвесная;
  • кран-балка подвесная двухпролетная.

К стандартному грузоподъемному оборудованию относят кран балки электрические однобалочные и двухбалочные.

Стоимость кран балки типовой конструкции значительно меньше, если сравнивать её с ценой специального мостового крана. В компании «Еврокран» Вы можете купить кран балки (однобалочные мостовые краны) по самым выгодным ценам и срокам доставки.

Кран-балки электрические однобалочные являются разновидностями мостовых кранов, функционирование которого осуществляется посредством как электрического, так и ручной привода. Кран балка электрическая может быть грузоподъемностью от 1 до 16тн, пролетом до 28,5м.

Производство кран-балок в нашей компании осуществляется как в разных регионах на территории России, так и в зарубежных странах. Цена на кран-балку опорную и на кран балку подвесную в нашей компании, позволит заказчику с различными финансовыми возможностями приобрести изделие нужной конфигурации с высоким уровнем качества. По Вашему желанию менеджеры предоставят Вам полный прайс-лист с указанием всех цен на наши кран-балки.

В производстве нашей компании есть не только кран-балка электрическая однобалочная и ручная, а также другие грузоподъемные краны разнообразных конфигураций и видов. Чтобы осуществить быструю транспортировку груза как в помещении, так и на улице применяют кран-балки подвесные, и не реже кран-балки опорные.

Кран-балка подвесная электрическая является более выгодной в цене, чем опорная, если помещение в котором будет монтироваться кран, не имеет подкрановой эстакады. Кран балки подвесные перемещаются по двутаврам, с помощью концевых тележек с мотор-редукторами.

Кран-балка 5т подвесная электрическая оснащена подъемным механизмом – тельфером, который является главной составляющей крана. Подвесная кран-балка электрическая питается с помощью трехфазной сети переменного тока при частоте 50Гц и напряжении 380В. В соответствии с требованиями заказчика, кран балка подвесная однобалочная производится для работы в нестандартной среде, температурном режиме, режиме работы, габаритных размерах, уменьшенной массе, а так же с регулировкой скоростей. Кран балки подвесные двухпролетные расположены на трех подкрановых путях и могут быть общим пролетом до 24м, что дает возможность значительно расширить пространство для эксплуатации мостового крана.

Для того чтобы провести целый цикл разгрузочно-погрузочных, транспортно-подъемных, монтажных операций на улице, под навесом, в закрытых помещениях используется кран-балка опорная электрическая.

В зависимости от предусмотренных характеристик кран балка опорная электрическая бывает:

  • взрывозащищенной;
  • пожаробезопасной;
  • с уменьшенной строительной высотой;
  • общего назначения.

Кран балки опорные выпускают со стандартной грузоподъемностью 1…16 тонн.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник