Меню

Преобразователь сигнала синусоидального тока

Инвертор чистый синус

Пост опубликован: 22 ноября, 2017

Инвертор – это техническое устройство, служащее для преобразования напряжения одного типа в другое.

В системах преобразования альтернативной энергии в электрическую (солнечные электростанции, ветровые установки), инвертор преобразует напряжение 12 Вольт постоянного тока в напряжение питания бытовых приборов 220 Вольт частотой 50 Гц.

Форма получаемого напряжения на выходе может быть различной конфигурации: синусоидальное, приближенное к синусоидальной (квазисинусоида) и прямоугольное (импульсное). Вид синусоиды определяет конструкция прибора и его предназначение (возможность использования).

Инвертор чистый синус

Инвертор чистый синус – это более сложный прибор, чем его аналоги, обеспечивающий параметры напряжения, необходимые для нормальной работы сложных технических устройств, чувствительных к качеству напряжения питающей сети (медицинская и прочая сложная техника, автоматика газового и иного оборудования, сложные бытовые приборы).

Принцип работы

Работа аппаратов типа «чистый синус», обеспечивающих параметры напряжения на выходе, соответствующие параметрам внешних электрических сетей, осуществляется следующим образом:

Инвертор

  • Постоянное напряжение, подается на прибор с аккумуляторных батарей (12,0 В) и проходит предварительную обработку, в процессе которое его значение достигает значения цепи питания нагрузки (220,0 В);
  • Электрическая энергия, преобразованная в требуемые значения напряжения, поступает на мостовой инвертор, где напряжение постоянного тока преобразуется в переменное.

Форма выходного сигнала близка к чистой синусоиде, что достигается путем использования транзисторов, управляемых по методу многократной широтно-импульсной модуляции;

  • Установленный в приборе высокочастотный фильтр низких частот придает выходному сигналу вид чистой синусоиды.

Плюсы и минусы

К достоинствам инверторов типа «чистый синус» можно отнести их следующие свойства:

  1. Синусоида на выходе близка к форме кривой напряжения бытовой сети 220 Вольт промышленного способа производства электрической энергии.
  2. Форма выходного сигнала позволяет подключать к приборам данного типа различные технические устройства, работа которых зависит от качества напряжения питающей сети.
  3. Использование инверторов типа «чистый синус» увеличивает сроки эксплуатации бытовых приборов и технических устройств, чувствительных к качеству напряжения.
  4. Улучшаются условия эксплуатации подключенной нагрузки: снижается шум при работе циркуляционных насосов и их нагрев, работа различных источников света и электронных устройств, не происходит «зависание» компьютера и электронных гаджетов.

Основным недостатком инверторов «чистый синус» является их высокая стоимость, в сравнении с приборами, выдающими выходной сигнал иной формы.

Схема

Инверторы данного типа могут устанавливаться для преобразования напряжения в сетях, в которых имеются аккумуляторные батареи служащие накопителями электрической энергии, а также в прочих электрических сетях, когда форма напряжения (выходного сигнала) не соответствует требуемой конфигурации.

Ниже приведена принципиальная схема инвертора типа «чистый синус» в которой учтены разные варианты использования.

Фильтр «Ф» и диодный мост «М» работают, когда инвертор улучшает качество напряжения и не требуются — при подключении прибора к аккумуляторам.

При работе с накопителями энергии (аккумуляторными батареями), выпрямление напряжения осуществляет диодный мост М1.

Генератор, задающий сигнал напряжением 220 В частотой 50 Гц, построен на основе микросхемы D5, а контроллеры D1, D2 формируют сигнал синусоидальной формы.

С контроллеров, выходной сигнал поступает на микросхемы D3, D4, где формируется сигнал управления транзисторами.

Силовая схема построена по мостовому принципу. Нагрузка подключается в одно плечо диодного моста, питающее напряжение – в другое.

Защита по тока собрана на резисторах R17-19, R22 и диодах VD11,12.

Где купить

Инвертор — это прибор, который не относится к товарам повседневного спроса, поэтому его нельзя приобрести в простом магазине или супермаркете. Реализацией подобных изделий занимаются специализированные организации и торговые сети, ориентированные на альтернативные виды энергии, используемые для автономного электроснабжения объектов различных типов.

Если у потребителя уже установлена солнечная электростанция или ветровой генератор, то лучше всего приобрести модель того производителя, оборудование которого уже используется. Для этого необходимо найти дилера этой компании и заключить с ним договор поставки.

Если создается новая система автономного электроснабжения и пользователь самостоятельно выполняет ее комплектацию, то можно пойти несколькими путями, это:

  1. Опять же найти дилера компании, производящей подобные устройства и приобрести товар у него.
  2. Обратиться в торговую компанию, реализующую приборы из этой группы товаров.
  3. Поискать необходимое устройство в сети интернет, где представлен достаточно широкий ассортимент подобных устройств.

Как сделать своими руками

При желании изготовить инвертор типа «чистый синус» своими руками, необходимо помнить, что это достаточно сложное электронное устройство. При самостоятельном изготовлении необходимо не только уметь работать с паяльником, а также нужно знать, как правильно монтировать микросхемы и прочие электронные комплектующие. Уметь работать с электронными приборами, с помощью которых можно отслеживать форму выходного сигнала, а также подстраивать элементы схемы, обеспечивающие соответствие формы и силы выходного сигнала, предъявляемым требованиям.

Как сделать своими руками

Ниже, приведена одна из схем, используя которую, можно самостоятельно собрать подобный прибор. Это достаточно простая схема, но тем не менее, она широко используется и промышленными производителями таких устройств.

В качестве генератора сигналов используется микросхема КР1211ЕУ1, а в качестве ключей — транзисторы IRL2505. Повышающий трансформатор повышает напряжение на выходе до 220 вольт, а снижение высокочастотных помех осуществляет конденсатор.

Конденсатор53

Мощность устройства, собранного по этой схеме – до 0,5 кВт, в зависимости от мощности трансформатора.

Источник

Чистая синусоида VS её ступенчатая аппроксимация. Часть I

Чистая синусоида VS её ступенчатая аппроксимация. Часть I

Аватар пользователя

Содержание

Содержание

Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.

В таких случаях в характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.

Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.

Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well

Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.

Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.

Читайте также:  Расчет глубины проникновения тока

Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт

Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.

Нагревательное электрооборудование

Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.

Люминесцентные, светодиодные лампы и светильники

В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.

Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.

По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).

Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

Источник

Преобразователи синусоидальных токов и напряжений в постоянные токи и напряжения и их применение

8. Преобразователи синусоидальных токов и напряжений в постоянные токи и напряжения и их применение

Применяемые схемы выпрямления. Наибольшего распространения получила схема двухполупериодного выпрямления И9. Основными элементами ее являются вентили — обычно кремниевые диоды VD1—VD4. Они включаются так, что при активной нагрузке R„ в первый полупериод открытыми оказываются, например, диоды VD1—VD3, а во второй — диоды VD2—VD4.

При этом на выходе схемы в нагрузке R„ выпрямленные ток и напряжение не постоянны. Они содержат постоянную составляющую, которая является средним значением выпрямленных величин и переменную составляющую. Постоянные составляющие тока и напряжения

где /ти, — максимальные, / и U— действующие значения синусоидальных тока и напряжения.

Переменная составляющая содержит в основном гармоническую двойной частоты. Для правильного функционирования устройств релейной защиты и автоматики переменная составляющая обычно нежелательна, поэтому принимают, меры по ее уменьшению. В частности, включают конденсатор параллельно нагрузке или реактор последовательно с ней.

Схемы трехфазного выпрямителя содержат шесть диодов, включенных так, что при подаче на вход схемы синусоидальных напряжений фаз А, В, С потенциал точки / равен высшему, а потенциал точки 2 —- низшему из потенциалов фаз А, В, С. При этом открытыми оказываются диод, связывающий точку / с фазой, имеющей высший потенциал, и диод, связывающий точку 2 с фазой, имеющей низший потенциал. Если в рассматриваемый момент времени фаза А имеет высший, а фаза В — низший потенциал, то открытыми будут диоды VD1 и VD5, а путь прохождения тока — таким, как показано на рис. 20, а. При симметричных напряжениях фаз и активной нагрузке среднее значение выпрямленного напряжения на нагрузке ср = 2,34£/ф, где иф — действующее значение фазного напряжения.

Читайте также:  Найти силу тока после размыкания

Если на вход схемы подаются синусоидальные токи, сумма которых в каждый момент времени равна нулю, то одновременно оказываются открытыми три диода.

Через один из них ток проходит в нагрузку, а через два других возвращается, либо через два диода проходит в нагрузку, а через один возвращается. Так, если ток проходит через VD2, то возвращается через VD4 и VD6. При симметричных токах среднее значение выпрямленного тока в активной нагрузке 1^ = 1,35/. Если в выпрямляемых токах имеются составляющие нулевой последовательности, то эти составляющие не смогут попасть в нагрузку. Для создания такого пути в схему выпрямления вводят дополнительно два диода VD4, VD8.

Максиселекторы и миниселекторы используются для выделения максимального тока или минимального напряжения, которые обычно являются током и напряжением поврежденной фазы. Эти устройства позволяют выполнить защиту от всех видов КЗ односистемной, т. е. имеющей только один измерительный орган. Так выполнена, например, максимальная токовая защита устройства ЯРЭ-2201. Для выделения максимального тока использован максиселек-тор, имеющий промежуточные трансформаторы тока TLA1—TLA3, к вторичным обмоткам которых подключены двухполупери-одные выпрямители VS1—VS3. Для выделения из подведенных токов /„, 1Ь, 1С тока, мгновенное значение которого больше, выходы выпрямителей соединены последовательно и подключены к нагрузке R„. Наибольший выпрямленный ток соответствующего выпрямителя проходит через нагрузку к двум остальным выпрямителям, открывая все их диоды. При этом два других тока замыкаются через диоды своих выпрямителей и не выходят во внешнюю цепь. Иногда подводимые к максиселектору токи предварительно преобразуются в напряжения, например, с помощью трансреакторов. При этом для максиселектора может быть использована рассмотренная выше трехфазная двухполупериодная схема выпрямления. Напряжение на выходе этой схемы пропорционально наибольшему из подводимых токов. Такой максиселектор применен, например, в дистанционной защите ДЗ-10.

Миниселектор представляет собой устройство, на вход которого подаются выпрямленные напряжения, пропорциональные, например, линейным напряжениям ЦаЬ, ЦЬс, Цсв, а на выходе всегда выделяется напряжение, пропорциональное наименьшему из подводимых напряжений.

Работу миниселектора поясняет схема, на которой R„ — сопротивление нагрузки 2, С/3 — напряжения на входах мини-селектора, Uon — опорное напряжение. Пусть выполняется условие Ui Uon, то все диоды оказываются закрытыми и ток в нагрузке RH отсутствует. Таким образом, ток в нагрузке определяется разностью напряжения £4п и наименьшего из напряжений

Блоки питания предназначены для обеспечения оперативным выпрямленным током устройств релейной защиты и автоматики. Они обычно подключаются к первичным измерительным трансформаторам тока, напряжения или трансформаторам собственных нужд подстанций. Существует несколько типов блоков питания UGA, подключаемых к трансформаторам тока ТА, отличающихся главным образом отдаваемой мощностью. Все они содержат промежуточный насыщающийся трансформатор тока TLAT и двухполупериодный выпрямитель VS на выходе. Использование насыщающегося трансформатора тока необходимо для поддержания достаточно стабильного напряжения на выходе блока питания при изменении тока i в широких пределах. Однако из-за насыщения магнитопровода TLAT резко искажается форма кривой вторичного напряжения, а его амплитуда при значительных нагрузках блока существенно возрастает. В связи с этим принимаются меры по ограничению амплитуды вторичного напряжения до приемлемых значений. Одной из мер стабилизации является включение параллельно вторичной обмотке TLAT конденсатора С1, обеспечивающего вместе с ветвью намагничивания трансформатора феррорезонансную стабилизацию напряжения на выходе блока. Вторичная обмотка имеет ответвления для подрегулировки тока наступления феррорезонанса и для получения требуемого номинального напряжения. Последовательное и параллельное включение секций первичной обмотки TLAT, а также наличие в них ответвлений позволяют изменять входное сопротивление блока и уставки по току наступления феррорезонанса.

В, устройствах релейной защиты и автоматики в качестве кратковременных источников оперативного тока применяются коденсаторные батареи, заряженные в нормальном режиме работы. Заряжаются конденсаторные батареи с помощью специальных зарядных устройств. Однако для этой цели можно использовать блоки питания, если к выходу выпрямителя VS подключить диод VD и резистор R. Для медленного заряда конденсаторной батареи С2 она включается через резистор R. Диод VD исключает ее разряд при исчезновении тока i на входе TLAT. Такие блоки получили названия блоков питания и заряда. К ним относится блок БПЗ-402. Его мощность не превышает 200 Вт.

Блоки питания VGV, подключенные к трансформатору напряжения TV или трансформатору Т собственных нужд, содержат промежуточный трансформатор напряжения и выпрямитель. Первичная обмотка промежуточного трансформатора состоит из двух секций, а вторичная имеет ответвления. Соединяя секции параллельно или последовательно, можно блок питания включать на номинальные входные напряжения, например ПО и 220 В соответственно. Ответвления на вторичной обмотке позволяют иметь неизменный уровень выпрямленного напряжения при различных входных напряжениях.

Стабилизация вторичного напряжения промежуточного трансформатора предусматривается не всегда. Так, она отсутствует, например, в блоке питания и заряда БПЗ-401.

Блоки питания и заряда могут работать в двух режимах: в режиме постоянного питания устройств зашиты и автоматики выпрямленным оперативным током или в режиме заряда конденсаторных батарей, используемых в качестве кратковременных источников оперативного тока для приведения в действие коммутационных аппаратов и устройств защиты и автоматики. В режиме заряда к блокам питания и заряда можно подключить и нагрузку небольшой мощности.

На рис. 23 показаны схемы подключения блоков питания и заряда UGA типа БПЗ-402 к измерительным трансформаторам тока ТА и VGVmm БПЗ-401 — к трансформаторам напряжения TV или к трансформаторам собственных нужд Т. Включение токовых цепей релейной защиты и автоматики на трансформаторы тока, используемые для питания блоков питания VGA, не допускается. Блоки VGA и VGV можно использовать как раздельно, так и совместно.

Промышленность выпускает также блоки питания серии БПТ-11 и БПН-11. Основная область их применения — элементы системы электроснабжения, оборудованные выключатели с легкими приводами, где они могут обеспечить питание электромагнита отключения с номинальной мощностью 20. 25 Вт, а также питание устройств защиты сигнализации однофазных замыканий на землю в сетях с изолированной или компенсированной нейтралью. Выпускаются также мощные блоки питания БПТ-1002 и БПН-1002, предназначенные для питания выпрямленным оперативным током аппаратуры релейной защиты, сигнализации и управления, выполненной на номинальное напряжение ПО или 220 В, имеющие номинальную мощность 800. 1500 Вт в кратковременном режиме.

Источник



Чистый синусоидальный инвертор на Arduino

Инверторы используются в случаях когда невозможно получить напряжение переменного тока (AC) из сети. Инверторы предназначены для преобразования напряжения постоянного тока (DC) в напряжение переменного тока (AC) и разделяются на два типа: чистые синусоидальные инверторы (Pure Sine Wave Inverters) и модифицированные прямоугольные инверторы (Modified Square Wave Inverters). Чистые синусоидальные инверторы достаточно дорого стоят, а модифицированные прямоугольные инверторы стоят существенно дешевле.

В этой статье мы рассмотрим создание чистого синусоидального инвертора (pure sine wave inverter) на основе платы Arduino.

Внешний вид чистого синусоидального инвертора на Arduino

Если вы решили повторить создание рассмотренной в данной статье схемы, то учтите, что она не имеет ни защиты от превышения тока, ни защиты от короткого замыкания, ни защиты от перегрева. Схема данного проекта представлена в образовательных целях и не рекомендуется для промышленного использования. Тем не менее, вы по своему желанию можете добавить в этот проект названные схемы защиты – подробной информации о них достаточно много в сети.

Читайте также:  При каком токе можно заряжать аккумулятор

Предупреждение : при работе с представленной в этом проекте схемой будьте предельно внимательны, поскольку в ней используются высокие напряжения и импульсы напряжения, формируемые за счет переключения сигнала на входе схемы.

Что такое синусоидальная ШИМ (SPWM)

SPWM расшифровывается как Sinusoidal Pulse Width Modulation и переводится как синусоидальная ШИМ (широтно-импульсная модуляция). Ранее мы ее уже рассматривали в генераторе синусоидальных и прямоугольных импульсов на Arduino.

Как мы знаем, в ШИМ мы можем изменять ее скважность (коэффициент занятости, duty cycle), то есть соотношение периодов активности (on-time) и неактивности (off-time). Таким образом, изменяя скважность ШИМ, мы изменяем среднее напряжение импульса. Это наглядно показано на следующей картинке.

Принцип ШИМ (широтно-импульсной модуляции)

Как видно из представленной картинки, при скважности (коэффициенте заполнения) 100% мы получаем среднее выходное напряжение 5V, при скважности 50% получаем среднее выходное напряжение 2.5V, а при скважности 25% — еще в 2 раза меньше.

Синусоидальное напряжение представляет собой аналоговое напряжение, которое изменяет свою амплитуду с течением времени, поэтому мы можем воспроизвести «поведение» синусоидальной волны при помощи непрерывного изменения скважности ШИМ волны (сигнала), что показано на следующем рисунке.

Принцип формирования синусоидальной волны при помощи непрерывного изменения скважности ШИМ сигнала

Если вы посмотрите на схемы, представленные ниже в данной статье, вы увидите, что на выход трансформатора подключается конденсатор – он как раз и ответственен за сглаживание подобного сигнала переменного тока.

Используемый входной сигнал будет заряжать и разряжать конденсатор в соответствии с входным сигналом и нагрузкой. Мы будем использовать SPWM сигнал (синусоидальный ШИМ сигнал) высокой частоты, он будет иметь сначала очень маленькую скважность 1%, этот 1% будет заряжать конденсатор совсем чуть-чуть, сигнал со скважностью 5% будет заряжать конденсатор немного больше, скважность 10% будет заряжать конденсатор еще больше и постепенно мы достигнем скважности 100%, а после этого мы будем уменьшать скважность до 1%. С помощью этого процесса будет сформирована очень гладкая кривая, очень похожая на синусоидальную волну. Таким образом, обеспечивая правильные значения скважности на входе, мы получим хорошую синусоидальную волну на выходе.

Как работает инвертор на основе SPWM сигнала

Схема подобного инвертора показана на следующем рисунке.

Схема инвертора на основе SPWM сигнала

Как вы видите, мы использовали в схеме два MOSFET транзистора N-типа и полумост для управления трансформатором. Для уменьшения нежелательных шумов и защиты MOSFET транзисторов мы использовали два диода 1N5819, включенных параллельно MOSFET транзисторам. Для уменьшения возможных нежелательных импульсов, формируемых в секции управления, мы использовали резисторы сопротивлением 4.7 Ом, включенных параллельно диодам 1N4148. И, наконец, транзисторы BD139 и BD 140 включены по двухтактной схеме для управления затворами MOSFET транзисторов потому что MOSFET транзисторы имеют очень большое емкостное сопротивление затвора и требуют как минимум напряжения 10V на своем затворе чтобы работать корректно.

Для лучшего понимания принципов работы представленной схемы на следующем рисунке мы привели ее половину. Рассмотрим случай когда MOSFET транзистор в ней открыт – в этой ситуации ток протекает сначала через трансформатор и затем через MOSFET транзистор замыкается на землю, таким образом, магнитный поток возникает в том же самом направлении, в котором течет ток, поэтому сердечник трансформатора передает этот магнитный поток на вторую обмотку и, таким образом, на выходе мы получаем положительную половину цикла синусоидального сигнала.

Протекание тока в прямом направлении в инверторе

В следующем цикле ток течет уже в обратном направлении и, следовательно, магнитный поток возникает в этом же самом направлении, поэтому направление магнитного потока в сердечнике трансформатора также изменяется (по сравнению с предыдущим рассмотренным случаем).

Протекание тока в обратном направлении в инверторе

То есть теперь мы знаем, что направление магнитного потока в трансформаторе изменяется. Таким образом, включая и выключая оба MOSFET транзистора (они инвертированы по отношению друг к другу) и осуществляя эти переключения 50 раз в секунду, мы будем формировать изменяющееся магнитное поле в сердечнике трансформатора, следовательно, будет изменяться направление тока во вторичной обмотке трансформатора в соответствии с законом Фараде. В этом и заключается основной принцип работы инвертора.

Теперь на следующем рисунке рассмотрим полную схему чистого синусоидального инвертора на основе платы Arduino.

Схема чистого синусоидального инвертора на основе платы Arduino

Как вы видите из представленной схемы, переключение циклов работы выше представленной схемы инвертора будет осуществляться с помощью двух цифровых контактов платы Arduino.

Конструкция проекта

В демонстрационных целях мы собрали схему нашего инвертора на стрипборде (Veroboard). На выходе трансформатора схемы будет протекать огромный ток, поэтому в этом месте коннекторы (соединители) необходимо использовать как можно толще.

Внешний вид чистого синусоидального инвертора на Arduino

Необходимые компоненты

Полный список компонентов, необходимых для сборки нашего инвертора, представлен в следующей таблице.

№ п/п Название Тип компонента Количество Где купить
1 Atmega328P микроконтроллер 1
2 IRFZ44N Mosfet транзистор 2 купить на AliExpress
3 BD139 транзистор 2 купить на AliExpress
4 BD140 транзистор 2 купить на AliExpress
5 22pF конденсатор 2 купить на AliExpress
6 10K,1% резистор 1 купить на AliExpress
7 16MHz кварцевый генератор 1 купить на AliExpress
8 0.1uF конденсатор 3 купить на AliExpress
9 4.7R резистор 2 купить на AliExpress
10 1N4148 диод 2 купить на AliExpress
11 LM7805 регулятор напряжения 1 купить на AliExpress
12 200uF,16V конденсатор 1 купить на AliExpress
13 47uF, 16V конденсатор 1 купить на AliExpress
14 2.2uF,400V конденсатор 1 купить на AliExpress

Внешний вид этих компонентов показан на следующем рисунке.

Внешний вид компонентов для сборки инвертора

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы кратко рассмотрим его основные фрагменты.

Прежде чем переходить непосредственно к программе давайте вспомним основы формирования необходимого нам сигнала. Как выглядит изменяющийся во времени ШИМ сигнал мы изучили в первой части нашей статьи, здесь же стоит проблема как сформировать подобный сигнал с помощью платы Arduino.

Для формирования изменяющего во времени ШИМ сигнала мы будем использовать 16-битный timer1 с коэффициентом деления предделителя равным 1, что обеспечит нам время 1600/16000000 = 0.1ms на каждую единицу счета таймера (более подробно о таймерах Arduino можно прочитать в этой статье). То есть в нашем случае половина цикла нужной нам синусоидальной волны будет соответствовать 100 единицам счета таймера. Другими словами, мы можем разделить полный цикл нашей синусоидальной волны на 200 частей.

То есть нам необходимо разделить нашу синусоиду на 200 частей и рассчитать соответствующие амплитуды каждой из этих частей. Далее мы должны конвертировать эти значения в значения счета таймера при помощи умножения их на предел счета таймера. Потом эти значения мы должны поместить в таблицу преобразования чтобы в дальнейшем брать из нее значения для таймера, с помощью которого мы и будем формировать нашу синусоидальную волну.

Чтобы упростить программу нашего проекта мы использовали специальную библиотеку для формирования SPWM сигнала, написанную программистом по имени Kurt Hutten. Скачать ее можно по следующей ссылке.

Начать программу нужно с подключения необходимых заголовочных файлов.

Источник