Меню

Преобразователи напряжения для энергосберегающих ламп

Схемы энергосберегающих ламп

Содержание

  1. Дополнение от 27 февраля 2016 г
  2. Скачать справочные данные на транзисторы для люминесцентных ламп
  3. Скачать книги
  4. Видео

Статья содержит подборку электрических принципиальных схем энергосберегающих ламп и электронных балластов. Схемы понадобятся для ремонта энергосберегающих ламп, про который рассказано в статье Как и зачем ремонтировать энергосберегающие лампы.

Забегая вперед, скажу, что сейчас, когда хорошую светодиодную лампу можно купить за 100 руб., смысла в ремонте становится всё меньше. Это – главное, что надо усвоить перед ремонтом.

Итак, перед тем, как браться за ремонт, рассмотрим принципиальные электрические схемы энергосберегающих (компактных люминесцентных) ламп. Схемы взяты из интернета, авторство я не знаю, если авторы откликнутся – буду рад.

Как обычно, все схемы и картинки можно увеличить, кликнув по ним мышкой.

Принцип действия всех схем одинаков.

Переменное напряжение 220 В с частотой 50 Гц поступает на двухполупериодный выпрямитель (диодный мост). Из переменного напряжения таким образом получается постоянное. Таким образом, на конденсаторе выпрямителя образуется напряжение около 310 В.

Это постоянное напряжение питает генератор, который выдает импульсное напряжение с частотой около 10 кГц. Генератор построен на двух высоковольтных транзисторах, даташиты на которые можно скачать в конце статьи. Также в схему обязательно входит трансформатор, который обеспечивает положительную обратную связь для обеспечения генерации.

Ниже приведены другие варианты схем ламп и электронных балластов, но принцип действия тот же. Если у кого есть другие варианты схем, присылайте, опубликую.

У светодиодных светильников источники питания совсем другие, просьба не путать. Если интересно, моя статья по схемам и ремонту светодиодных светильников и прожекторов.

Вот такая подборка схем.

Дополнение от 27 февраля 2016 г

Публикую схему и фото от читателя по имени Икром из солнечного Ташкента. Его вопрос и мой ответ см. в комментариях за эту дату.

Скачать справочные данные на транзисторы для люминесцентных ламп

Как и в смежной статье по ремонту ламп, выкладываю файлы по теме. Всё можно скачать бесплатно и свободно. Пользуйтесь на здоровье, и пишите отзывы и благодарности в комментарии.

• mje13001 / Даташит на транзистор mje13001, pdf, 88.67 kB, скачан: 6909 раз./

• MJE13004 MJE13005_75W / Даташит на транзисторы NPN, pdf, 184.15 kB, скачан: 4060 раз./

• mje13005_on_75W / Даташит на транзисторы к энергосберегающим лампам., pdf, 135.38 kB, скачан: 4020 раз./

• mje13006 mje13007_80W / Даташит на транзисторы к энергосберегающим лампам., pdf, 192.8 kB, скачан: 3613 раз./

• MJE13007-On_80W / Даташит на NPN транзисторы к энергосберегающим лампам., pdf, 127.07 kB, скачан: 10257 раз./

• mje13008 mje13009_100W / Даташит на NPN транзисторы к энергосберегающим лампам. Собраны несколько даташитов разных производителей в один файл., pdf, 1.07 MB, скачан: 4755 раз./

Скачать книги

• В.В.Федоров. Люминесцентные лампы / Подробно рассмотрены принципы работы люминесцентных ламп. Процесс производства, схемы включения, параметры. Много теории, хороший учебник, djvu, 2.72 MB, скачан: 11713 раз./

• П.А.Дормакович. Газосветная реклама. / Вопросы эксплуатации, монтажа и разработки трубчатых разрядных ламп с холодным катодом., djvu, 2.86 MB, скачан: 3817 раз./

• Пособие по ремонту энергосберегающих ламп / Пособие по ремонту энергосберегающих ламп. Рассказано, как можно дать вторую жизнь энергосберегающей лампе. Или из двух-трех собрать одну., doc, 25.62 MB, скачан: 26645 раз./

Напоминаю, что много книг по электронике, электрике можно скачать также со страницы Скачать.

В заключении хочу сказать, что схемы энергосберегающих ламп постоянно совершенствуются и меняются, поэтому на данной странице приведено далеко не всё.

Видео

Ниже – пример ремонта энергосберегайки:

Напоминаю для тех, кто хочет заняться ремонтом КЛЛ: вам сюда.

Спасибо )))За информацию

Долго курил схемы, но так и не смог понять какими элементами/номиналами, кроме транзисторов, определяется мощность балласта экономки. Разброс номиналов +/- лапоть 🙁
Есть очень хороший баллон (точно рабочий)на 32W, но самый большой имеющийся балласт на 20W. Подскажите, пожалуйста, что в нём нужно изменить?
Останки родного балласта восстановлению не подлежат абсолютно. Обуглившиеся элементы не читабельны, транзисторы были DD127D (в имеющемся 13003D, т.е. должны потянуть.).

Вася, основная разница в дросселе и в трансформаторе на колечке. Если есть родной дроссель, ставьте его, ну и транзисторы по мощнее

Вася, я бы не парился, поставил бы рабочий балласт от 20 ватт лампочки, работать будет точно! Потребление будет не 20, чуть больше, скажем 22 ватт примерно, главное заработает

А сколько интересно срок службы у нового поколения круглых больших потолочных люстр полностью на светодиодах у них ещё разные режимы есть ночник тёплым светом она светит холодным регулировка яркости и.т.д

Сталкивался нет ? кто Нибудь с такими светильниками стоит нет их вообще покупать

Статья отличная, но в моём случае мало чем поможет. Сгорел балласт от Feron ELS64 E27 на 65W – неисправен трансформатор, диодный мост и много чип-резисторов, номинал которых нет возможности опознать, спирали лампы обе целы. Очень жаль такую лампу, а сделать ничего нельзя – транс мотать уже нецелесообразно. 🙁

Доброго времени суток.

Какая схема соответствует ЭПРА светильника Feron на 1 линейную люминисцентную лампу мощностью 36 ватт.

Доброго дня ! Спасибо большое за хорошую статью! Если можно, добавьте плз методы повышения надежности ламп КЛЛ. Конденсаторы по питаню, дроссель в питании после диодного моста с конденсатором и т.п.

Имею схему бездросельного питания люминисцентной лампы ЛДЦ 40 но не смог ее сюда вставить.

Доброго времени суток всем!
Есть лампа PHILIPS MAS LEDtube VLE HF 1500mm 22W840 T8 ROT AC 50-100V 25K-80KHz 300-700mA (сгорел драйвер). Есть балласт OSRAM C24PH03 от лампы OSRAM DULUX SUPERSTAR CIRCOLUX 24W 190mA (сгорела лампа). Как их соединить?
Спасибо!

Спасибо,за труд . А где найти карту напряжений, как ремонтировать если не знаешь где сколько должно быть?

Карты напряжений приводились только в советской аппаратуре.

Но ремонт часто не сводится только к замеру напряжений. Подробнее читайте в статье про ремонт КЛЛ.

Есть ли схема для UltraLight КТ001?
Спасибо!

здравствуйте. имеется лампа модель CHNSL 4U-E40-6400K 105W. хотелось бы уточнить схему балласта но не знаю как вставить сюда картинку. у меня получается что одна нить накала сидит на одной дорожке! возможно это заводской брак я конечно не профессионал но не могу понять а как она будет работать?

здравствуйте. выкладываю ссылки на балласт. Александр прошу дать совет. на ножки отмеченные как 1 и 2 накручивается первая первая нить накала. эти же ножки сидят на одной дорожке. вопрос-как через нить пойдет ток? или это какая то новейшая технология??
https://ibb.co/NSkjWbD
https://ibb.co/DK07JgQ

Читайте также:  Частотный преобразователь напряжения тока

здравствуйте Александр вы можете ответить на мой вопрос или нет? может все дело в деньгах так вы скажите какие проблемы то!

Может кому то пригодится, случайно узнал, что основой схемы электронного балласта, взята схема, которая называется Мультивибратор Ройера или генератор Ройера (Роера).
По такой же схеме сделан «электронный трансформатор» для галогенных ламп.
Сейчас такая схема используется реже в связи с появлением дешевых интегральных микросхем- контроллеров импульсных источников питания, позволяющих сократить количество катушек индуктивности, трансформаторов, и обеспечивающих плавную регулировку выходного тока и/или напряжения, а также большую надёжность, защиту от перенапряжения и короткого замыкания.
Достоинства: Простота реализации, минимальное количество элементов, максимальное использование сердечника трансформатора.
Недостатки: Сложная реализация защиты от короткого замыкания. Невозможность плавной регулировки напряжения или тока с помощью ШИМ. Повышенные потери в транзисторах.
Ещё отмечу, частота генератора сильно зависит от многих параметров элементов и напряжения питания, для задач где нужна стабильность частоты, например генератор ультразвука – схема генератора Ройера не подходит.
В Википедии есть статья про Мультивибратор Ройера, где описан принцип работы схемы:
https://ru.wikipedia.org/wiki/%D0%9C%D1%83%D0%BB%D1%8C%D1%82%D0%B8%D0%B2%D0%B8%D0%B1%D1%80%D0%B0%D1%82%D0%BE%D1%80_%D0%A0%D0%BE%D0%B9%D0%B5%D1%80%D0%B0

Приветсвую. Скажите какой тип ферритовых колец стоят в этих лампах?

Схему опубликовал в конце статьи.

К сожалению, Вы не указали мощность лампы, производителя, в каких условиях они стоят (плотность, проветривание, температура в помещении, какой потолок)

1. Прежде всего, тут явный перегрев. Производители экономят на всём, и часто можно поставить детали меньшей мощности, учитывая, что лампы редко когда работают больше 3 часов подряд. И за это время перегореть не успевают. Я так понимаю, что у вас производство, и таких ламп очень много.
Рекомендую в корпусе насверлить много отверстий диаметром 3-5 мм, чтобы улучшить теплоотвод.
Также посмотрите, куда отводится тепло. Если тепло скапливается в межпотолочном пространстве, это плохо.

2. Анализировать и переделывать схему нет смысла. Да, можно поэкспериментировать с режимами, поставить другие транзисторы, перемотать трансформатор. Но вот только ЗАЧЕМ? Почитайте мою статью про ремонт ламп, ссылка в начале статьи.

3. Храните товарные чеки и упаковку. На такие лампы обычно гарантия год, и продавец их обязан поменять.

4. Поставьте другие лампы, другого производителя, сравните.

5. Рано или поздно, вы всё равно перейдёте на светодиодные светильники. Они экономичнее и долговечнее. Подумайте об этом сейчас.
Дешевле всего купить их на китайском сайте АлиЭкспресс, у нас в магазинах такие же, но в 2-3 раза дороже. Вот ссылка для примера: http://ali.pub/xa7u5

Александр, ответьте пожалуйста на мой вопрос. Вы можете изучить и сказать в чем же нюанс в данной схеме балласта для компактной люминесцентной лампы (КЛЛ).
Дело в том, что балласт имеет (по заявлению изготовителя-Китай) мощность 50-58 Вт и он рассчитан на 62 Ваттную спираль КЛЛ. В процессе включения и работы лампы потребляет мощность в области 60-49 Вт.

Но есть одна ПРОБЛЕМА ((( При эксплуатации ламп этих ламп по 15-17 часов в сутки, центральная часть балласта сильно греется. И через месяц перегорает изоляция тороидальной катушки. В результате лампа либо просто перестает включаться или же при включении из-за перегоревших проводов катушек внутри лампы возникает КЗ и лампы со звуком «взрыва» перегорают. Что интересно, при этом стеклянная спираль лампы остается почти новым. Ведь лампа еще и 2 месяца не проработала.

Источник



Преобразователи напряжения для энергосберегающих ламп

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.


Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы КЛЛ от импульсного БП

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для предобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Читайте также:  Петехии от физического напряжения

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60ºС
Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

Читайте также:  При внешнем задерживающем напряжении фототок

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

Источник

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Подключение мощных светодиодов в осветительных устройствах осуществляется через электронные драйверы, которые стабилизируют ток, на своём выходе.

В наше время большое распространение получили так называемые энергосберегающие люминисцентные лампы (компактные люминисцентные лампы –КЛЛ).Но со временем они выходят из строя. Одна из причин неисправности –перегорание нити накала лампы. Не спешите утилизировать такие лампы потому, что в электронной плате содержатся много компонентов которые можно использовать в дальнейшее в других самодельных устройствах. Это дроссели, транзисторы, диоды, конденсаторы. Обычно, у этих ламп электронная плата исправна, что дает возможность использования в качестве блока питания или драйвера для светодиода. В результате таким образом получим бесплатный драйвер для подключения светодиодов, тем более это интересно.

Можно посмотреть процесс изготовления самоделки в видео:

Перечень инструментов и материалов
-энергосберегающая люминисцентная лампа;
-отвертка;
-паяльник;
-тестер;
-светодиод белого свечения 10вт;
-эмальпровод диаметром 0,4мм;
-термопаста;
-диоды марки HER, FR, UF на 1-2А
-настольная лампа.

Шаг первый. Разборка лампы.
Разбираем энергосберегающую люминисцентную лампу аккуратно поддев отверткой. Колбу лампы нельзя разбивать так, как внутри находятся пары ртути. Прозваниваем нити накала колбы тестером. Если хоть одна нить показывает обрыв, значит колба неисправна. Если есть исправная аналогичная лампа, то можно подключить колбу от нее к переделываемой электронной плате, чтобы удостовериться в ее исправности.

Шаг второй. Переделка электронного преобразователя.
Для переделки я использовал лампу мощностью 20Вт, дроссель которой выдержать нагрузку до 20 Вт. Для светодиода мощностью 10Вт это достаточно. Если нужно подключить более мощную нагрузку, можно применить электронную плату преобразователя лампы с соответственной мощности, или поменять дроссель с сердечником большего размера.

Также возможно запитать светодиоды меньшей мощности, подобрав требуемое напряжение количеством витков на дросселе.
Смонтировал перемычки из провода в на штырьках для подключения нитей накала лампы.

Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп

Поверх первичной обмотки дросселя нужно намотать 20 витков эмальпровода. Затем припаиваем вторичную намотанную обмотку к выпрямительному диодному мостику. Подключаем к лампе напряжение 220В и измеряем напряжение на выходе с выпрямителя. Оно составило 9,7В. Светодиод, подключенный через амперметр, потребляет ток в 0,83А. У этого светодиода номинальный ток равен 900мА , но чтобы увеличить его ресурс в работе специально занижено потребление по току. Диодный мостик можно собрать на плате навесным монтажом.

Схема переделанной электронной платы преобразователя. В результате из дросселя получаем трансформатор с подключенным выпрямителем. Зеленым цветом показаны добавленные компоненты.

Источник