Стабилизатор с малым падением напряжения для питания устройств от батарей
Напряжение стабилизации составляет 5 вольт или 3,3 вольта в зависимости от номиналов резисторов. Может использоваться для питания различных устройств от батарей или аккумуляторов, а также в системах бесперебойного питания от электросети, если на вход подключить соответствующее зарядное устройство для аккумуляторов. Коэффициент стабилизации порядка 150,выходное сопротивление 0,1 Ом. Ток нагрузки зависит от допустимой рассеиваемой мощности силового транзистора.
Принципиальная схема стабилизатора показана на Рис.1. Номиналы резисторов в скобках указаны для стабилизатора 3,3 вольта. Источником входного напряжения для стабилизатора 5 вольт служат 4 батареи АА (ААА) напряжением 6,4 вольта или 4 аккумулятора АА(ААА) напряжением 5,6 вольта, а для стабилизатора 3,3 вольта 3 батареи нпряжением 4,8 вольта или 3 аккумулятора напряжением 4,2 вольта.
Рис1.
Силовой полевой n-канальный транзистор VT2(IRLML6344) включен после нагрузки и не требует для управления дополнительного источника питания. Это транзистор c логическим уровнем напряжения на затворе открывается уже при напряжении 2,5 вольта (Rси=37мОм) в корпусе SOT23, ток нагрузки до 4 ампер, рассеиваемая мощность до 1,3 Вт, напряжение сток исток 30 вольт. Могут использоваться любые транзисторы с логическим уровнем управления и низким сопротивлением сток исток, например IRLMR2905, AUIRL3114.
Делитель напряжения на резисторах R5, R6, R7 и светодиод оптопары U1.2 образуют датчик выходного напряжения и являются одновременно нагрузкой стабилизатора при неподключенной
рабочей нагрузке. Напряжение на светодиоде оптопары определяется напряжением на резисторах R6 и R7 так как ток через светодиод (30-50 мкА) много меньше тока через эти сопротивления(около 2мА) и составляет около 0,9 вольта. Это нелинейный участок вольтамперной характеристики светодиода, на котором небольшое изменение напряжения приводит к значительному изменению тока. Это изменение приводит к изменению фототока транзистора оптопары U1.1, который усиливается транзистором VT1, коллекторный ток которого создаёт падение напряжения на резисторе R4, изменяет напряжение на затворе транзистора VT2.
Изменение тока через VT2 изменяет напряжение на резисторах R6 и R7 так чтобы уменьшить изменение напряжения на светодиоде. Происходит стабилизация напряжения на светодиоде а также выходного напряжения. Выходное напряжение определяется выражением: Uвых(В)=0,9(1+R5/(R6+R7). При этом ток через делитель (Iдел=Uвых/(R5+R6+R7))должен быть порядка 2-3 мА. Напряжение на затворе полевого транзистора Uзи=Uоп –Iк(Uвых)*R4 зависит от опорного напряжения и тока коллектора VT1, зависящего от выходного напряжения. Поэтому опорное напряжение, подаваемое на резистор R4, должно быть хорошо стабилизировано. Для этого используется источник опорного напряжения на микросхеме TL431. Сопротивление R4 определяет ток через светодиод оптопары и напряжение на нём. Выбирается так, чтобы напряжение на светодиоде было в пределах 0,88-0,92 вольта(примерно от 3 до 10 кОм).
При входном напряжении от 5,05 до 6,4 вольта и токе нагрузки 0,2 ампера выходное напряжение меняется от 5 до 5,01 вольта. Без нагрузки 5,02 вольта. Для стабилизатора 3,3 вольта при изменении от 3,35 до 4,8 вольта и токе 0,2 ампера выходное напряжение меняется от 3,3 до 3,31 вольта. Без нагрузки 3,32 вольта. Максимальная рассеиваемая мощность на VT2 составляет 300 мВт. Если такой коэффициент стабилизации не нужен, микросхему TL431 можно исключить. При этом изменение выходного напряжения возрастёт до 0,07 вольта (Кст около 20). При указанных на схеме номиналах стабилизатор в настройке не нуждается. Нужно только резистором R6 подстроить выходное напряжение. Быстродействие определяется резистором R4 и входной ёмкостью Cси транзистора VT2 (Cси=600 пФ ). Постоянная времени
при R4=10 кОм равна 6 мкс а время отклика 2,3*6=13,8 мкс, то есть эффективно будут подавляться частоты до 70 кГц.
Схема может быть реализована как на обычных, так и SMD компонентах. Поскольку силовой транзистор VT2 в корпусе SOT23, я решил использовать чип резисторы 0805, TL431 в корпусе SOT89, VT1 тоже в SOT23, оптопара BC817 в DIP-4 установлена поверхностным монтажом, так же как и резистор R6 . Фотография платы и печатная плата с установленными деталями стабилизатора показаны на Рис.2.
Рис.2
Плата стабилизатора разведена в программе Sprint-Layout 6, там же нарисована принципиальная схема. Дорожки и контактные площадки платы нарисованы линиями толщиной 0,8 мм не в слое металлизации а в слое П(слой контура платы), в котором можно рисовать только линии и окружности. Этого достаточно чтобы нарисовать плату. Далее создаётся файл фрезеровки, в котором фреза идёт по центрам дорожек, а не вокруг них, потом рисунок платы не фрезеруется, а рисуется на фольгированном стеклотекстолите маркером Edding 780 (ширина линии 0,8мм) на плоттере с ЧПУ. Затем плата травится в хлорном железе, дорожки лудятся и впаиваются компоненты. Готовая плата не содержит никаких отверстий, а в устройство просто приклеивается универсальным клеем.
На Рис.3 фотографии стабилизаторов 5 и 3,3 вольта, собранных на отсеках для четырёх и трёх батарей АА.
Источник
Пять понижающих регуляторов с низким током потребления
Analog Devices ADP5300
Низкий ток покоя, также называемый током потребления, может быть важным параметром для вашей конструкции источника питания
Собственный ток потребления (IQ) – этот ток, необходимый чипу для работы даже тогда, когда он не отдает мощность в нагрузку. Это минимальный ток питания, который будет использовать чип. Благодаря совершенствованию технологических процессов, токи покоя микросхем понижающих регуляторов с годами снижаются. Более жесткий контроль современного процесса производства микросхем также означает, что разброс значений IQ от чипа к чипу будет меньше, чем в прежние времена.
Именно IQ является причиной того, почему КПД любой микросхемы понижающего регулятора будет тем хуже, чем меньше энергии требуется вашей схеме. Поскольку IQ – это постоянный минимальный уровень мощности, необходимый для работы чипа, процент потерь КПД будет меньше, когда чип выдает полную мощность, чем когда он просто работает на холостом ходу, и питаемые им схемы берут минимальный ток.
Вот пять понижающих стабилизаторов с низким током покоя. Обратите внимание, что понижающим стабилизатором обычно называют микросхему, внутри которой имеются мощные переключающие транзисторы. Контроллер понижающего стабилизатора для коммутации больших токов использует внешние мощные транзисторы.
Микросхема | Изготовитель | Ток потребления, нА | Входное напряжение, В | Выходной ток, мА |
BD70522GUL | Rohm | 180 | 2.5 … 5.5 | 500 |
ADP5300 | Analog Devices | 350 | 2.15 … 6 | 500 |
MP28300 | MPS | 500 | 2 … 5.5 | 300 |
MAX16956 | Maxim Integrated | 1100 | 3.5 … 36 | 300 |
TPS62800 | Texas Instruments | 2300 | 1.8 … 5.5 | 1000 |
Если вам нужен эффективный импульсный понижающий стабилизатор с низким током потребления, обязательно ознакомьтесь с этими компонентами перед началом следующего проекта.
Материалы по теме
- Datasheet Analog Devices ADP5300
- Datasheet Maxim Integrated MAX16956
- Datasheet MPS MP28300
- Datasheet Rohm BD70522GUL
- Datasheet Texas Instruments TPS62800
Перевод: AlexAAN по заказу РадиоЛоцман
Источник
Выбор инвертора (преобразователя напряжения)
Инвертором называют устройство, преобразующее постоянный ток в переменный, меняя при этом величину напряжения.
Инверторы, преобразующие 12 В или 24 В в 220 В, становятся все востребованнее – ведь сфер применения этим приборам много:
- автопутешествия – в дороге через инвертор к автомобильному аккумулятору можно подключить необходимые приборы – холодильник, насос, электроинструмент;
- использование в системах альтернативных источников энергии — к примеру, для потребления электричества, выработанного солнечными батареями;
- организация резервного источника электроснабжения для домашних нужд. Простая связка автомобильный аккумулятор + инвертор при неожиданном отключении электричества как минимум поддержит освещение в доме. Такая схема, кстати, имеет очень большое распространение в соседнем Китае – там аккумуляторы с инверторами нередкие гости в домах;
- на даче или при строительстве загородного дома, кода линия электричества еще не подведена, или ее в принципе нет, а бензогенератор ставить не хочется.
И это еще не все ситуации, когда инвертор облегчит вам жизнь.
Если вы уже задумались о покупке такого прибора, то следует разобраться – какие виды преобразователей напряжения бывают, и как подобрать оптимальный вариант под ваши нужды, не переплачивая лишних денег.
Первое, с чем нужно определиться – зачем вам нужен инвертор?
Самые простые, миниатюрные и маломощные инверторы, подключаемые в машинах к прикуривателю, организуют «обычную розетку» для подключения прибора небольшой мощности – зарядки телефона или ноутбука, подзарядки фонарика. При этом не нужно будет возить с собой ворох проводов, для питания каждого из устройств от прикуривателя. Вы просто будете подключать родной провод в организованную розетку.
Через автомобильный прикуриватель не стоит подключать инвертор с нагрузкой выше 150 Вт – можно вывести из строя всю электропроводку автомобиля и нарваться на дорогостоящий ремонт. Потребителей выше 150 Вт следует подключать только напрямую к аккумулятору, через клеммы.
К таким преобразователям можно подключить уже более мощные приборы. Для уменьшения потерь КПД и надежности, подключение мощных инверторов к клеммам аккумулятора следует проводить не «крокодильчиками», которыми иногда комплектуется прибор, а медными клеммами, под винт. Сечение и длину проводов подключения выбирайте исходя из расчета потерь тока, а не по нагреву.
Следующее, на что стоит обратить внимание – форма тока, которую выдает инвертор. Это важный момент, так как он определяет, какое оборудование вы сможете подключить к инвертору. Есть два вида:
- чистая синусоида – токовая кривая в виде ровной синусоиды. К такому инвертору можно подключать любые приборы, без опасений за их сохранность. Недостатком этого типа можно назвать только высокую стоимость – для получения чистого синуса требуется сложная электрическая схема.
- модифицированная синусоида – вид токовой кривой, напоминающей синусоиду, но на деле являющейся ступенчатой характеристикой. К инвертору с модифицированным синусом не стоит подключать: асинхронные двигатели, компрессоры, чувствительные к помехам устройства. Приборы даже если и будут работать при таком питании, но с заметным ухудшением качества – звуковая аппаратура будет «фонить», насосы и двигатели сильно греться и шуметь. Самое меньшее зло в этой ситуации будет – уменьшение КПД, большее (при постоянной эксплуатации) – их скорый выход из строя, из-за тяжелого режима работы.
Но это не значит, что инвертор с модифицированным синусом использовать не рекомендуется. Он не окажет негативного влияния на качество работы ламп освещения, нагревательных приборов, оборудования с импульсными блоками питания (ноутбуки, телефоны), большинство телевизоров, электроинструмент с коллекторными двигателями (лобзики, дрели). Однако для обеспечения работы электроинструмента от инвертора лучше докупить устройство плавного пуска – чтобы пусковые токи не выходили за пределы допустимого.
При выборе инвертора обязательно нужно продумать, что вы хотите к нему подключать, и уже после этого решать – готовы вы платить за устройство с чистым синусом, или оптимальной покупкой для вас будет менее дорогое устройство с модифицированной синусоидой.
Все преобразователи напряжения обладают двумя характеристиками по мощности – постоянная мощность и пиковая мощность прибора. Нужно различать эти два параметра.
Постоянная мощность говорит о том, с какой нагрузкой сможет справляться инвертор в длительном режиме работы. В зависимости от потребностей, можно подобрать устройство как невысокой мощности от 60 до 1000 Вт, так и серьёзный агрегат с мощностью от 1000 Вт и выше, позволяющий организовать мини-электростанцию на выезде.
Постоянную мощность необходимо выбирать таким образом, чтобы оставался запас, хотя бы 20 % – ни одно устройство не будет работать хорошо на пределе своих возможностей, поэтому не экономьте на этом моменте. Также не следует забывать о возможностях аккумулятора, ведь его емкость ограничена.
Пиковая мощность определяет предельную кратковременную нагрузку – от 150 до 10000 Вт. К примеру, пусковой ток холодильника, подключаемого к инвертору, как правило, в несколько раз выше номинальной мощности – это следует учитывать. Если вы не рассчитаете мощность инвертора для покрытия пускового тока, то прибор-потребитель не сможет начать работать.
Если инвертор будет работать от аккумулятора не снятого, а работающего от генератора машины, помните, что ток нагрузки инвертора не должен превышать выдаваемого тока генератора.
На деле подбор подходящей мощности не так уж и сложен, рассмотрим пример.
Подключаемая нагрузка: холодильник (15 Вт), зарядка ноутбука (80 Вт), зарядка телефона (60 Вт). Здесь, конечно, следует учесть пусковой ток холодильника, превышающий номинальный в 3-4 раза. Получится, что в момент включения холодильник потребит (в худшем случае) до 60 Вт. В итоге имеем, что для означенной нагрузки нам хватит инвертора в 300 Вт.
Конечно, не все инверторы работают с высоким КПД, при расчете мощности следует плюсовать к нагрузке еще возможные потери в кабеле, в зажимах и прочее – но вцелом видно, что для обеспечения минимально необходимых нужд сильно мощный инвертор не нужен. В большинстве случаев для комфортного туризма хватит прибора мощностью до 600 – 700 Вт, то есть с суммарным током нагрузки около 50 А, что гораздо меньше тока стандартного генератора на современных машинах.
Другой расклад получается, если вы захотите использовать инвертор для подключения электроинструмента – лобзиков, дрелей и др. Здесь уже целесообразно использование мощных инверторов – от 1 кВт и выше.
Преобразователи напряжения бывают различного уровня входного напряжения. Устройства до 2,5-3 кВт как правило работают от входного напряжения 12 В. Более мощные устройства, рассчитанные на выдачу нескольких киловатт, выпускаются на более высокие уровни напряжения – 24 и 48 В. Поэтому, выбирая инвертор, обратите внимание не только на мощность, но и на параметры входного напряжения:
- максимальное входное напряжение от 12 до 30 В
- минимальное входное напряжение от 9,2 до 24 В
Практически все инверторы оборудованы теми или иными видами защит, которые следят за параметрами работы, и помогают избежать критических ситуаций, действуя на отключение или звуковой сигнал:
- защита от избыточного напряжения на входе
- защита от короткого замыкания
- защита от неправильного подключения
- защита от низкого напряжения на входе (в том числе помогает избежать переразряда аккумулятора, отключая нагрузку при падении напряжения до заданной величины)
- защита от перегрева
- защита от перегрузки
Для подключения нагрузки у преобразователей напряжения могут быть предусмотрены различные выходы:
Устройство с необходимыми вам типами и количеством выходов выбирайте исходя из того, какое оборудование нужно подключить. Выходы постоянного тока с уровнем напряжения 12 – 28 В понадобятся для подключения специального автооборудования: магнитол, ТВ-приемников, подогрева сидений, автохолодильников). USB-порты пригодятся для подзарядки мобильных устройств. Выходы в виде розеток потребуются для «универсального» подключения электроприборов. При этом типы розеток могут быть различны:
Также встречаются преобразователи напряжения, не рассчитанные на подключение потребителя 220 В, и преобразующие 24 В в 12 В и 12 В в 24 В – у таких устройств розеток нет.
Длина кабеля инвертора может достигать 100 м. С одной стороны, кабель длиной 10-100 м — это удобно: обеспечивает мобильность устройства, его можно переносить, не трогая аккумулятор. С другой стороны, не стоит забывать, что каждый кабель является слабым звеном электросистемы, так как на нем происходят потери мощности. Поэтому не стоит гнаться за длиной кабеля. Лучше обратите внимание на его качество – чем толще кабель, тем выше его сечение и меньше потерь электричества он будет создавать. Чем гибче кабель – тем качественнее его материалы и меньше вероятность повреждения от загибов.
Инверторы выпускаются в корпусах из различных материалов:
- алюминий
- алюминий и пластик
- металл
- металл и пластик
- пластик
С точки зрения пассивного охлаждения лучше всего инверторы в алюминиевом корпусе – он обеспечивает максимальный отвод тепла. Но для инверторов с активным охлаждением (вентилятором в корпусе), где проблема отвода тепла решена, лучшим вариантом будет корпус из стали – как более прочный. Комбинированные корпуса из алюминия+пластик или стали+пластик тоже хороший вариант, а вот корпус из одного пластика допустим только для маломощного прибора.
Устанавливать любой инвертор в машине необходимо так, чтобы обеспечивалось его охлаждение, то есть он не должен быть закрыт. Засунуть работающий инвертор в бардачок или в кейс – не лучший вариант.
В недорогом ценовом сегменте до 1400 рублей вы найдете инверторы небольшой мощности – до 200 Вт, с модифицированной синусоидой, рассчитанные на подключение к прикуривателю и питание мелких приборов.
В среднем ценовом сегменте от 1400 до 5000 рублей уже встретятся приборы помощнее – до 800 Вт, рассчитанные по большей части на подключение к аккумулятору, но все с той же модифицированной синусоидой.
В дорогом ценовом сегменте от 5000 и выше можно найти приборы как с чистым синусом, так и с модифицированным, но высокой мощности – до 5000 Вт.
Можно подвести итог: при выборе инвертора, не гонитесь за высокой мощностью прибора, т.к. все остальное оборудование может не вывезти такую нагрузку. Лучше обратите внимание на качество сборки, комплектующие и материалы. Стоить хороший качественный прибор даже средней мощности не будет дешево. Для некоторых видов оборудования подойдет инвертор только с чистым синусом на выходе. Не поленитесь рассчитать нагрузку перед подключением – и у вас не будет неприятных сюрпризов в последствии.
Источник