Меню

При измерении среднего значения напряжения однополярных прямоугольных импульсов

Однократные косвенные измерения

3.11.Определить значение потребленной электрической энергии в цепи, оценить погрешность ее измерения и записать результат, если ток в цепи равен (10,230 ± 0,015) А; сопротивление составляет (11,08 ± 0,01) Ом; время равно (405,2 ± 0,1) с. Границы погрешности указаны для вероятности 0,95 при нормальных условиях измерения.

3.12.На основе прямых измерений тока и напряжения в цепи получены результаты: 0,50 ± 0,02 А; 150 В ± 5%; при доверительной вероятности 0,95 в нормальных условиях измерения. Определите потребляемую мощность, запишите результат измерения.

3.13. Можно ли измерить частоту звукового генератора с погрешностью 2 %, имея осциллограф, позволяющий измерять временные интервалы с погрешностью 6 %?

3.14.Для определения частоты использован измеритель периода. Оценить абсолютную и относительную погрешности измерения частоты, если период равен 25 мкс, а абсолютная погрешность его измерения равна ± 1 мкс при доверительной вероятности 0,997 и нормальных условиях измерений. Оформить результат.

3.15. При измерении скважности периодического импульсного сигнала в нормальных условиях с помощью электронного осциллографа получены результаты измерения периода (80 мкс) и длительности импульса (20 мкс). Оценить абсолютную и относительную погрешности измерения скважности, если предел допускаемой относительной погрешности измерения отрезков времени равен 6 %. Оформить результат измерения.

3.16. С помощь электронного осциллографа измерено пиковое значение сигнала ( U m = 3 В), а квадратичным вольтметром – его среднеквадратическое значение ( U = 2,3 В). Полученные результаты использованы для вычисления коэффициента амплитуды k a = U m/U. Оценить абсолютную и относительную погрешности измерения коэффициента амплитуды, если пределы допускаемых относительных погрешностей измерения напряжения с вероятностью 0,997 равны: осциллографом 6 %, а вольтметром – 4 %. Измерения выполнены в нормальных условиях.

3.17. При измерении среднего значения напряжения однополярных прямоугольных импульсов с помощью электронного осциллографа в нормальных условиях было измерено пиковое значение напряжения U m = 5 В, длительность импульса t = 2 мкс и период Т = 10 мкс. Оценить абсолютную и относительную погрешности измерения среднего значения напряжения, вычисленного по формуле. =( U mt)/ T, если измерение пикового значения выполнено с пределом допускаемой относительной погрешности 6 %, а интервалы времени измерены с абсолютной погрешностью ± 0,2 мкс с вероятностью 0,997.

3.18. С помощью вольтметра в нормальных условиях произвели измерение добротности согласно выражению Q = U 2 /U 1, где U 2 = 230 В, U 1 = 1 В. Оцените абсолютную и относительные погрешности измерения добротности, если установка входного напряжения осуществлена с относительной погрешностью, предел которой равен 2,5 % , а измерение выходного напряжения в контуре при резонансе выполнено с абсолютной погрешностью ± 4 В в нормальных условиях с вероятностью 0,997.

3.19. Выполнено однократное измерение напряжения на участке электрической цепи сопротивлением R=(10±0.1) Ом с помощью вольтметра класса 0,5 по ГОСТ 8711-77 (верхний предел диапазона 1,5 В, приведенная погрешность 0,5%). Показания вольтметра 0,975 В. Измерение выполнено при температуре 25 °С при возможном магнитном поле, имеющем напряженность до 300 А/м.

3.20.Вычислите абсолютную инструментальную погрешность измерения сопротивления R в электрической цепи, показанной на рисунке, если показания вольтметра U= 120 В, а амперметра I= 0,5 А. Верхние пределы измерения вольтметра 250 В, амперметра 2 А. Классы точности идеальных средств измерений указаны на рисунке.

Источник



Электрические и временные параметры прямоугольных импульсов

Периодические и непериодические сигналы, форма которых отличается от синусоидальной, обычно называют импульсными сигналами . Процессы генерации, преобразования, а также вопросы практического применения импульсных сигналов относятся сегодня ко многим областям электроники.

Электрические и временные параметры прямоугольных импульсов

Так, например, ни один современный блок питания не обходится без расположенного на его печатной плате генератора прямоугольных импульсов, такого например как на микросхеме TL494, выдающей импульсные последовательности с параметрами, подходящими для текущей нагрузки.

Читайте также:  Стабилизаторы напряжения fdr 3000va

Прямоугольный, треугольный и пилообразный импульсы

Поскольку импульсные сигналы могут иметь различную форму, то и называют различные импульсы в соответствии с похожей по форме геометрической фигурой: прямоугольные импульсы, трапецеидальные импульсы, треугольные импульсы, пилообразные импульсы, ступенчатые, и импульсы разных других форм. Между тем, наиболее часто практически применяются именно прямоугольные импульсы . О их параметрах и пойдет речь в данной статье.

Прямоугольный электрический импульс

Конечно, термин «прямоугольный импульс» несколько условен. В силу того что ничего идеального в природе не бывает, как не бывает и идеально прямоугольных импульсов. На самом деле реальный импульс, который принято называть прямоугольным, может иметь и колебательные выбросы (на рисунке показаны как b1 и b2), обусловленные вполне реальными емкостными и индуктивными факторами.

Выбросы эти могут, конечно, отсутствовать, однако существуют электрические и временные параметры импульсов, отражающие в числе прочего «неидеальность их прямоугольности».

Прямоугольный импульс имеет определенную полярность и рабочий уровень. Чаще всего полярность импульса положительна, поскольку подавляющее большинство цифровых микросхем питаются положительным, относительно общего провода, напряжением, и следовательно мгновенное значение напряжения в импульсе всегда больше нуля.

Но есть, например, компараторы, питаемые двухполярным напряжением, в таких схемах можно встретить разнополярные импульсы. Вообще микросхемы, питаемые напряжением отрицательной полярности, не так широко применяются, как микросхемы с обычным положительным питанием.

В последовательности импульсов рабочее напряжение импульса может принимать низкий или высокий уровень, причем один уровень с течением времени сменяет другой. Уровень низкого напряжения обозначают U0, уровень высокого U1. Наибольшее мгновенное значение напряжения в импульсе Ua или Um, относительно начального уровня, называется амплитудой импульса .

Фронт и срез импульса

Разработчики импульсных устройств зачастую оперируют активными импульсами высокого уровня, такими как показанный на рисунке слева. Но иногда практически целесообразно применить в качестве активных импульсы низкого уровня, для которых исходное состояние — высокий уровень напряжения. Импульс низкого уровня показан на рисунке справа. Называть импульс низкого уровня «отрицательным импульсом» — безграмотно.

Перепад напряжения в прямоугольном импульсе называют фронтом, который представляет собой быстрое (соизмеримое по времени со временем протекания переходного процесса в цепи) изменение электрического состояния.

Перепад с низкого уровня к высокому уровню, то есть положительный перепад, называют передним фронтом или просто фронтом импульса. Перепад от высокого уровня к низкому, или отрицательный перепад, называют срезом, спадом или просто задним фронтом импульса.

Передний фронт обозначают в тексте 0.1 или схематически _|, а задний фронт 1.0 или схематически |_.

В зависимости от инерционных характеристик активных элементов, переходный процесс (перепад) в реальном устройстве всегда занимает некоторое конечное время. Поэтому полная длительность импульса включает в себя не только времена существования высокого и низкого уровней, но также времена длительности фронтов (фронта и среза), которые обозначаются Тф и Тср. Практически в любой конкретной схеме время фронта и спада можно увидеть при помощи осциллографа.

Крутизна фронта и крутизна среза

Так как в реальности моменты начала и окончания переходных процессов в перепадах очень точно выделить непросто, то принято считать за длительность перепада промежуток времени, во время которого напряжение изменяется от 0,1Ua до 0,9Ua (фронт) или от 0,9Ua до 0,1Ua (срез). Так и крутизна фронта Кф и крутизна среза Кс.р. задаются в соответствии с данными граничными состояниями, и измеряются в вольтах в микросекунду (в/мкс). Непосредственно длительностью импульса называют промежуток времени, отсчитываемый от уровня 0,5Ua.

Когда рассматривают в общем процессы формирования и генерации импульсов, то фронт и срез принимают по длительности за ноль, поскольку для грубых расчетов эти малые временные промежутки оказываются не критичны.

Импульсная последовательность

Импульсная последовательность — это импульсы, следующие друг за другом в определенном порядке. Если паузы между импульсами и длительности импульсов в последовательности равны между собой, то это периодическая последовательность. Период следования импульсов Т — это сумма длительности импульса и паузы между импульсами в последовательности. Частота f следования импульсов — это величина обратная периоду.

Читайте также:  Электронное регулирование напряжения схема

Прямоугольные импульсы

Периодические последовательности прямоугольных импульсов, кроме периода Т и частоты f, характеризуются еще парой дополнительных параметров: коэффициентом заполнения DC и скважностью Q. Коэффициент заполнения — это отношение времени длительности импульса к его периоду.

Скважность — это отношение периода импульса ко времени его длительности. Периодическая последовательность скважности Q=2, то есть такая, у которой время длительности импульса равно времени паузы между импульсами или у которой коэффициент заполнения равен DC=0,5, называется меандром.

Источник

8.5 Техника измерения напряжения

8.5 Техника измерения напряжения

Для измерения напряжения необходимо правильно выбрать прибор с уче­том его диапазона измерения, частотного диапазона, класса точности, по­требления мощности из измерительной цепи, влияния формы сигнала на ре- зультат измерения. Эти параметры указаны в технической документации на прибор. При этом следует обратить внимание на следующие важные обстоя­тельства. При измерении гармонических напряжений частота измеряемого сигнала должна находиться в пределах рабочего диапазона частот (желатель­но не у крайнего предела). Следует проверить по паспорту, не имеет ли место дополнительная частотная погрешность в измеряемой точке. При измерении сигналов сложной формы частотный диапазон должен выбираться с учетом частот высших гармоник. В этом случае правильную информацию о дейст­вующем значении сигнала отображают только электронные приборы, имею­щие преобразователи среднего квадратического значения.

Если используется электронный прибор с амплитудным детектором, то по

его показаниям можно определить действующее значение только для случая, когда известен коэффициент амплитуды измеряемого сигнала.Аналогично,при измерении прибором с преобразователем средневыпрямленного значе­ния для определения среднего квадратического значения сигнала нужно знать коэффициент его его формы К ф сигн . Тогда, с учетом формулы (5.7), получим:

U = Uпр К ф сигн / Kф ≈ Uпр К ф сигн / 1,11

Необходимо помнить, что приборы средневыпрямленного значения подчас вообще непригодны для измерения сигналов сложной формы,поскольку не обеспечивают необходимого частотного диапазона.

При измерениях на переменном токе с помощью электронных приборов необ­ходимо иметь в виду, что основная их масса имеет «закрытый вход» для постоян­ной составляющей сигнала. Это обстоятельство позволяет производить измере­ния в электронных схемах, где уровень сигнала значительно меньше, чем посто­янные напряжения режима покоя схемы. Однако при измерении импульсных сигналов приборами с амплитудными преобразователями на это следует обратить особое внимание.

С помощью временных диаграмм (рис8.17) показано, как можно оп-ределить параметры однополярных прямоугольных импульсов, амплитуда Uр , длительность и частота f = 1/T следования которых известны. Пусть шкала измерительного прибора отградуирована в дейст­вующих значениях синусоиды. Тогда показание прибора с амплитудным преобразователем измеряемого напряжения должно быть: Uпр = U m /1,41. Вследствие того, что прибор реагирует только на переменную составляющую сиг­нала, представленную на рис. 8.17 по отношению временнбй оси t ׳, показания прибора будут Uпр = U+m / 1,41 или Uпр = U-m / 1,41 в зависимости от полярности его подключения, где U+m =Uр (T – )/T – положительное амплитудное значение; U-m = Uр /T – отрицательное амплитудное значение импульса.

Формулы перевода напряжений получены из условия равенства нулю по-стоянной составляющей, т.е. площади S1 и S2 относительно временной оси t’ равны:

S1= U+m , S 2 = U-m (T – ).

Для обеспечения высокой точности измерений их следует производить в точках шкалы, где измеряемая величина близка к номинальному значению, т.е. в конце шкалы. Кроме того, перед началом процесса измерений прибор следует вывести в номинальный режим, откалибровать и установить нулевое значение при закороченных входных зажимах.

Читайте также:  Функция гистерезиса для однофазного напряжения

Измерение шумового напряжения

Наиболее точно среднее квадратическое значение шумового напряжения можно измерить квадратичным вольтметром. Градуировка вольтметра с квадратичным детектором не зависит от формы напряжения, а следователь­но, пригодна и в данном случае.

При измерении шумовых напряжений необходимо учитывать ряд специ­фических требований.

1. Шумовое напряжение может иметь большие выбросы, превышающие в 3…4 раза его среднее квадратическое значение. Поэтому протяженность квадратичного участка вольт-амперной характеристики детектора должна быть большой, при этом не должно быть ограничения шумового напряжения в усилителях, включенных до схемы детектора. Амплитудная характеристика входного усилителя должна быть линейной до уровня, вероятность превыше­ния которого шумовым напряжением невелика. Обычно этот уровень выби­рают равным утроенному среднему квадратическому значению напряжения.

2. Спектральная плотность шумового напряжения обычно занимает ши­рокую полосу частот. Усилители, включенные до нелинейного устройства, не должны вносить линейных искажений.

3. При измерении показания вольтметра определяются реализацией ис­следуемого процесса за конечное время накопления, т.е. вольтметр измеряет среднее квадратическое значение отдельных реализаций шумового напряже­ния. Пусть исследуемый шум — стационарный эргодический случайный процесс и его математическое ожидание и дисперсия не зависят от времени. Показания вольтметра различны для разных реализации, т.е. имеет место ошибка измерений, обусловленная конечностью времени накопления. Раз­брос показаний вольтметра от одной реализации к другой тем меньше, чем больше время накопления. При этом ошибка измерений также уменьшается. Для обеспечения требуемого времени усреднения в схеме вольтметра необ-. ходимо иметь фильтр, включаемый после нелинейного элемента. Роль фильтра может выполнять подвижная часть электромеханического прибора; в электронных приборах — это ФНЧ.

Измерения импульсных и высокочастотных напряжений

Импульсные напряжения измеряют с помощью импульсных вольтметров, построенных по схеме ,представленной на Рис8.6,а.В этой схеме возможно измерение амплитуды только положительных ипульсов, для отрицательных необходимо обратное включение диода. Специальные импульсные вольтмет­ры градуируются в амплитудных (пиковых) значениях.

При исследовании радиоимпульсов процессы в схеме вольтметра проте­кают так же, как и при измерении видеоимпульсов. Однако заряд конденса­тора происходит только при положительных полупериодах несущей частоты, т.е. при положительной огибающей.Погрешность в этом случае может возрасти.

В случае измерения импульсных напряжений необходимо иметь в виду, что спектр частот, занимаемый импульсами, бывает широким, особенно спектр радиоимпульсов малой длительности. Составляющие спектра могут находиться в области высоких частот, на которых появляются дополнитель­ные погрешности.

При измерении напряжений высокой частоты появляется погрешность, обусловленная влиянием следующих факторов:

• наличием входных емкостей детектора, емкостью и индуктивностью монтажа; наличие этих емкостей приводит к резонансным явлениям, при этом напряжение, приложенное к конденсатору и диоду, не равно измеряемо­му напряжению, как эти имеет место на низких частотах;

● инерционностью носителей заряда в активных элементах (например, транзисторах усилителей).

Для уменьшения погрешности первого вида необходимо частоту резонан­са входной цепи расположить вне диапазона рабочих частот вольтметра и предельно уменьшить длину соединительных проводов. Для этого исполь­зуемый в преобразователе детектор выполняют в виде отдельного выносного блока, который можно непосредственно подключать в точках, где измеряется напряжение. При этом максимально снижаются емкости и индуктивности соединительных проводников. Иногда измеряемое напряжение подается на вход вольтметра через отрезок длинной линии. Следует подчеркнуть, что резонансные, процессы во входной цепи приводят к завышению значения измеряемого напряжения.

Инерционность носителей заряда ведет к тому, что вольтметр показывает заниженное значение измеряемого напряжения, причем занижение тем больше, чем выше частота.

Погрешности за счет резонанса и инерционности носителей заряда имеют противоположные знаки, и поэтому происходит их частичная (или полная) компенсация.

Источник