Меню

Прибор для измерения тока холостого хода трансформаторов

2.4 Измерение тока и потерь ХХ

2.4 Измерение тока и потерь холостого хода

2.4.1. Традиционное устройство для измерения тока и потерь холостого хода при малом однофазном возбуждении

Для условий эксплуатации опыт холостого хода (XX) при малом однофазном возбуждении обмоток является основным способом измерения тока и потерь холостого хода. Эти испытания производятся для трансформаторов мощностью 10000 кВ·A и более [30]. Измерение тока и потерь ХХ трансформаторов при вводе их в эксплуатацию и в процессе эксплуатации производится с целью выявления возможных витковых замыканий в обмотках, замыканий в элементах магнитопровода и замыканий магнитопровода на бак трансформатора.

На практике в полевых условиях на объектах энергетики персонал высоковольтной лаборатории для измерения тока и потерь холостого хода силового трансформатора при малом однофазном возбуждении использует устройство, содержащее источник регулируемого переменного напряжения, с помощью которого поочередно возбуждаются фазы низковольтной обмотки силового трансформатора ab, bс, ас при подключенных к ней с помощью соединительных проводов амперметра, ваттметра, вольтметра и частотомера, в то время как обмотки высокого и среднего напряжения трансформатора остаются свободными [22, 250, 252].

Снятие показаний приборов следует проводить одновременно. Опыты холостого хода рекомендуется проводить при малом напряжении 380/220 В.

Испытательное напряжение подаётся на обмотку ВН, а другие обмотки остаются свободными. Предпочтительно обмотки возбуждать линейным напряжением 380 В, так как фазное напряжение сети может иметь значительное отклонение от синусо­идальной формы кривой, что приведет к искажению результатов измерений.

Перед проведением опыта XX трансформатора, находящегося в эксплуатации, необходимо размагнитить его магнитопровод от остаточного намагничивания, возникающего вследствие внезапного сброса питающего напряжения (отключение трансформатора от сети) и обрыва тока при его переходе не через нуль.

Снятие остаточного намагничивания производится пропусканием постоянного тока противоположных полярностей по одной из обмоток каждого стержня магнитопровода трансформатора.

Схема размагничивания обмоток силового трансформатора представлена на Рис. 2.29.

Процесс размагничивания осуществляется в несколько циклов. В первом цикле ток размагничивания должен быть не менее удвоенного тока XX трансформатора при номинальном напряжении. В каждом последующем цикле ток размагничивания должен быть примерно на 30% меньше тока предыдущего цикла. В последнем цикле ток размагничивания не должен быть больше тока XX трансформатора при напряжении 380 В.

Рис. 2.29. Схема размагничивания обмоток трансформатора.

Согласно [30] измерение тока и потерь холостого хода в процессе эксплуатации производится по решению технического руководителя предприятия, исходя из результатов хроматографического анализа растворённых в масле газов. Отличие измеренных значений от исходных данных не должно превышать 30%.

Испытание трёхфазных трансформаторов производится путём пофазного измерения тока и потерь XX [22, 262]. Это позволяет измеренные значения потерь каждой фазы сопоставлять не только с заводскими данными, но и между собой, что даёт возможность выявить фазу обмотки, в которой имеется дефект (Рис. 2.30).

При пофазном возбуждении трёхфазных трансформаторов производятся три опыта.

Первый опыт. Замыкают накоротко обмотку фазы а, возбуждают обмотки фаз b и с, измеряют ток и потери XX , .

Второй опыт. Замыкают накоротко обмотку фазы b, возбуждают обмотки фаз а и с, измеряют ток и потери XX , .

Третий опыт. Замыкают накоротко обмотку фазы с, возбуждают обмотки фаз a и b, измеряют ток и потери XX , .

В измеренные значения потерь XX вносятся поправки, учитывающие потери в схеме Pcx. Для определения мощности, потребляемой схемой, производится измерение потерь Рсх при отсоединённом от измерительной схемы трансформаторе.

Потери,,,трансформатора рассчитываются по формуле

(2.10)

При отсутствии дефекта в трёхфазном трансформаторе потери и при допустимом отклонении ±5% практически равны. Потери на 25. 50% (в зависимости от конструкции и числа стержней магнитопровода трансформатора) больше потерь и [250,252].

наличие регулируемого автотрансформатора, вольтметра, амперметра, ваттметра, частотомера, множества соединительных проводов;

процесс измерения не автоматизирован; необходимость сборки отдельной схемы для измерения тока и потерь холостого хода каждой фазы.

Для этой цели каждый раз оператор должен подниматься на силовой трансформатор для отсоединения и присоединения соединительных проводов устройства с аппаратными зажимами

Рис. 2.30. Схемы измерений тока и потерь холостого хода трёхфазного трёхобмоточного трансформатора при напряжении 380 В:

а)измерение I: закорочена фаза а, возбуждены фазы b и с;

б)измерение II: закорочена фаза b, возбуждены фазы a и c;

в)измерение III: закорочена фаза с, возбуждены фазы a и b.

РА — регулировочный автотрансформатор; А — амперметр, V— вольтметр;

W— ваттметр; H— частотомер

выводов обмотки НН с применением защитных средств и приспособлений, т. е. затрачивается значительное время для подготовки измерений и снижается безопасность выполнения работ;

устройство не вычисляет процентное отклонение потерь холостого хода по фазам обмотки силового трансформатора. При этом на погрешность измерения влияют составляющие кратных частот основной гармоники;

учёт ошибки измерения потери холостого хода в измерительных приборах и проводах возможен лишь с помощью оператора, который вычисляет их вручную;

для одновременной фиксации значений напряжений на всех приборах необходимо иметь несколько операторов;

невозможность передачи данных измерений в персональный компьютер, чтобы использовать многофункциональность последнего, например протоколировать результаты измерения в электронном виде и на бумажном носителе.

2.4.2. Автоматизированное устройство для определения тока и потери холостого хода при малом однофазном возбуждении

На рис. 2.31 приведена структурная электрическая схема автоматизированного устройства для определения тока и потерь холостого хода при малом однофазном возбуждении, совмещённая со схемой электрических соединений [244].

Устройство содержит источник регулируемого переменного напряжения ИРПН с управляющим входом, цифровой регистратор ЦР, имеющий по одному каналу напряжения и тока, и управляющий выход, коммутирующий орган КО, имеющий два входа (1 и 2) и три выхода (3,4,5), а также управляющий вход (F), соединительный трёхпроводной кабель (ТК), исследуемый трансформатор (С7).

На рис. 2.32 приведены элементы блоков первой части упрощённой структурной схемы (рис. 2.3) цифрового регистратора.

Устройство работает следующим образом.

Оператор собирает электрическую схему, приведённую на Рис. 2.31, включает в сеть источник регулируемого переменного напряжения ИРПН и ЦР.

После этого ЦР через свой управляющий выход D подаёт сигнал на управляющий вход F коммутирующего органа КО. Коммутирующий орган подключает свои входы 1 и 2 соответственно к выходам 3 и 4 с помощью переключателей П1 и П2. Выходы 3 и 4 коммутирующего органа в свою очередь соединены соответственно с зажимами фазы а и b обмотки НН силового трансформатора посред­ством трёхпроводного соединительного кабеля СТК. Одновременно включается контакт К1 коммутирующего органа.

Таким образом, подготавливается схема для измерения напряжения Uab, тока Iab, разности между током и напряжением, частоты сети и потерь холостого хода Pab цифровым регистратором фазы ab трансформатора (Рис. 2.31).

После этого напряжение ИРПН автоматически плавно нарастает до определённого значения. Сигналы с блока датчиков тока и напряжения БДТ и Н (Рис. 2.32) ЦР поступают в АЦП, где преобразовываются из аналоговых величин в цифровые. Затем вычислительный блок ВБ выполняет преобразование Фурье над входными сигналами (т. е. фильтрует составляющие гармоник кратных частот основной гармоники и определяет действующее значение и разность фаз этих сигналов на первой гармонике).

Читайте также:  Вывод формулы мощности для переменного тока

Далее вычисляются потери холостого хода фазы ab путём умножения действующего значения синусоидального напряжения на ток и косинус угла между ними. После завершения вычислений полученные значения частоты, тока, напряжения и потерь холостого хода выдаются на ЖКД и одновременно записываются в блок энергонезависимой памяти БЭП (Рис. 2.3).

Далее ЦР с помощью управляющего выхода D подаёт на ИРПН сигнал на отключение, и напряжение последнего плавно спадает до нуля. Контакт К1 и переключатели П1 и П2 коммутирующего органа переключаются в исходные положения. После этого готовится схема для измерения напряжения, тока и потерь холостого хода следующей фазы bс: ЦР выдаёт сигнал, по которому КО подключает свои входы 1, 2 с помощью переключателей П1 и П2 к выходам 4, 5, и одновремен­но включается контакт Кг коммутирующего органа.

Рис. 2.31. Структурная электрическая схема устройства измерения тока и потерь холостого хода. ИРПН — источник регулируемого переменного напряжения; ЦР — цифровой регистратор; КО — коммутирующий орган; СТК— соединительный 3-проводной кабель;

СТ— испытуемый силовой трансформатор

Рис. 2.32. Элементы блоков первой часта упрощённой структурной схемы цифрового регистратора для измерения тока и потерь холостого хода. БДТ и Н— блок датчиков тока и напряжения

ЦР обрабатывает входные сигналы аналогично ранее изложенному порядку, после чего он с помощью управляющего выхода D подаёт на ИРПН сигнал на отключение, и напряжение последнего плавно спадает до нуля. Одновременно контакт К2 и переключатели П1 и П2 переключаются в исходные положения.

После этого готовится схема для измерения следующей фазы ас: ЦР выдаёт сигнал, по которому КО подключает входы 1, 2 к выходам 3, 5 при помощи переключателей П1 и П2, и одновременно включается контакт К3. Далее процесс повторяется.

После записи измеренных значений частоты сети, тока, напряжения и мощности потерь холостого хода фазы ас в блок энергонезависимой памяти БЭП и индикаций этих параметров на ЖКД вычислительный блок вычисляет процентное отклонение потерь холостого хода (V) измеренных фаз по формулам

,

,

где Δ1, Δ2, Δ3 записываются в БЭП и выдаются на ЖКД, а контакт К3 и переключатели П1, П2 переключаются в исходные положения. Таким образом, производится автоматическое измерение частоты сети, а также тока, напряжения, потерь холостого хода и процентное отклонение потерь холостого хода по фазам обмотки НН силового трансформатора.

Кроме того, во всех трёх случаях в измеренные значения потерь холостого хода вносятся поправки, учитывающие потери в схеме Рсх. Для этого предварительно измеряются сопротивление соединительных проводов, переходное сопротивление контактов и переключателей КО, сопротивление СТК и входное сопротивление ЦР, суммарное значение которых заносится в БЭП. В последующем эта поправка вычислительным блоком учитывается автоматически, что также повышает точность измерения.

Применение СТК с цветовой маркировкой позволяет упростить процесс сборки схемы, что также является важным фактором при производстве работ в полевых условиях. Кроме того, использование кабеля позволяет размещать рабочее место на уровне земли, что исключает работы на высоте, тем самым повышается безопасность производства работ [244]. Устройство с успехом можно применить и для определения тока и потерь холостого хода однофазных трансформаторов и автотрансформаторов.

Источник

Режим холостого хода трансформатора

Одно из наиболее используемых электротехнических устройств – трансформатор. Данное оборудование используется для изменения величины электрического напряжения. Рассмотрим особенности режима холостого хода трансформатора, с учётом правил определения характеристик для различных видов устройств.

Трансформатор состоит из первичной и вторичной обмоток, расположенных на сердечнике. При подаче напряжения на входную катушку, образуется магнитное поле, индуцирующее ток на выходной обмотке. Разница характеристик достигается, благодаря различному количеству витков в катушках входа и выхода.

Принцип работы трансформатора

Принцип работы трансформатора

  1. Что такое режим холостого хода
  2. Как проводится опыт холостого хода
  3. Для однофазного трансформатора
  4. Для трёхфазного трансформатора
  5. Для сварочного трансформатора
  6. Видео: измерение тока холостого хода
  7. Меры по снижению тока холостого хода

Что такое режим холостого хода

Под режимом холостого хода понимают состояние устройства, при котором во время подачи переменного электротока на входную катушку выходная находится в разомкнутом состоянии. Данная ситуация характерна для агрегата, подключённого к электросети, при условии, что нагрузку к выходному контуру ещё не включили.

режимы работы

Режим короткого замыкания

Режим короткого замыкания

В процессе эксперимента можно найти:

  • электроток холостого хода (замеряется амперметром) – обычно его значение невелико, не больше 0,1 от номинального показателя тока первой обмотки;
  • мощность, теряемую в магнитопроводе прибора(или другими словами потери в стали);
  • показатель трансформации напряжения – примерно равен значению в первичной цепи, деленному на таковое для вторичной (оба значения – данные вольтметров);
  • по результатам замеров силы тока, мощности и напряжения первичной электроцепи можно высчитать коэффициент мощности: мощность делят на произведение двух других величин.

Как проводится опыт холостого хода

При проведении опыта холостого хода появляется возможность определить следующие характеристики агрегата:

  • коэффициент трансформации;
  • мощность потерь в стали;
  • параметры намагничивающей ветви в замещающей схеме.

Для опыта на устройство подаётся номинальная нагрузка.

При проведении опыта холостого хода и расчёте характеристик на основе данной методики необходимо учитывать разновидность устройства.

В данном состоянии трансформатор обладает нулевой полезной мощностью по причине отсутствия на выходной катушке электротока. Поданная нагрузка преобразуется в потери тепла на входной катушке I02×r1 и магнитные потери сердечника Pm. По причине незначительности значения потерь тепла на входе, их в большинстве случае в расчёт не принимают. Поэтому общее значение потерь при холостом ходе определяется магнитной составляющей.

Далее приведены особенности расчёта характеристик для различных видов трансформаторов.

Для однофазного трансформатора

Опыт холостого хода для однофазного трансформатора проводится с подключением:

  • вольтметров на первичной и вторичной катушках;
  • ваттметра на первичной обмотке;
  • амперметра на входе.

Приборы подключаются по следующей схеме:

1

Для определения электротока холостого хода Iо используют показания амперметра. Его сравнивают со значением электротока по номинальным характеристикам с использованием следующей формулы, получая итог в процентах:

Iо% = I0×100/I10.

Чтобы определить коэффициент трансформации k, определяют величину номинального напряжения U1н по показаниям вольтметра V1, подключённого на входе. Затем по вольтметру V2 на выходе снимают значение номинального напряжения U2О.

Коэффициент рассчитывается по формуле:

K = w1/w2 = U1н/ U2О.

Величина потерь составляет сумму из электрической и магнитной составляющих:

P0 = I02×r1 + I02×r0.

Но, если пренебречь электрическими потерями, первую часть суммы можно из формулы исключить. Однако незначительная величина электрических потерь характерна только для оборудования небольшой мощности. Поэтому при расчёте характеристик мощных агрегатов данную часть формулы следует учитывать.

потери-хх

Потери холостого хода для трансформаторов мощностью 30-2500 кВА

Для трёхфазного трансформатора

Трёхфазные агрегаты испытываются по аналогичной схеме. Но напряжение подаётся отдельно по каждой фазе, с соответствующей установкой вольтметров. Их потребуется 6 единиц. Можно провести опыт с одним прибором, подключая его в необходимые точки поочерёдно.

Читайте также:  Источником электростатического тока является проводник с током

При номинальном напряжении электротока обмотки более 6 кВ, для испытания подаётся 380 В. Высоковольтный режим для проведения опыта не позволит добиться необходимой точности для определения показателей. Кроме точности, низковольтный режим позволяет обеспечить безопасность.

Применяется следующая схема:

2

Работа аппарата в режиме холостого хода определяется его магнитной системой. Если речь идёт о типе прибора, сходного с однофазным трансформатором или бронестержневой системе, замыкание третьей гармонической составляющей по каждой из фаз будет происходить отдельно, с набором величины до 20 процентов активного магнитного потока.

В результате возникает дополнительная ЭДС с достаточно высоким показателем – до 60 процентов от главной. Создаётся опасность повреждения изолирующего слоя покрытия с вероятностью выхода из строя аппарата.

Предпочтительнее использовать трехстержневую систему, когда одна из составляющих будет проходить не по сердечнику, с замыканием по воздуху или другой среде (к примеру, масляной), с низкой магнитной проницаемостью. В такой ситуации не произойдёт развитие большой дополнительной ЭДС, приводящей к серьёзным искажениям.

Для сварочного трансформатора

Для сварочных трансформаторов холостой ход – один из режимов их постоянного использования в работе. В процессе выполнения сварки при рабочем режиме происходит замыкание второй обмотки между электродом и металлом детали. В результате расплавляются кромки и образуется неразъёмное соединение.

После окончания работы электроцепь разрывается, и агрегат переходит в режим холостого хода. Если вторичная цепь разомкнута, величина напряжения в ней соответствует значению ЭДС. Эта составляющая силового потока отделяется от главного и замыкается по воздушной среде.

Чтобы избежать опасности для человека при нахождении аппарата на холостом ходу, значение напряжения не должно превышать 46 В. Учитывая, что у отдельных моделей значение данных характеристик превышает указанное, достигая 70 В, сварочный агрегат выполняют со встроенным ограничителем характеристик для режима холостого хода.

Блокировка срабатывает за время, не превышающее 1 секунду с момента прерывания рабочего режима. Дополнительная защитная мера – устройство заземления корпуса сварочного агрегата.

Видео: измерение тока холостого хода

Меры по снижению тока холостого хода

Ток при нахождении трансформатора в режиме холостого хода возникает, благодаря конструктивным особенностям сердечника. Для ферромагнитного материала, попавшего в электрическое поле переменного тока, характерно наведение вихревых индуктивных токов Фуко, вызывающих нагревание данного элемента.

Чтобы снизить вихревые токи, сердечник изготавливают не в виде цельной детали, а набирают из пакета пластин небольшой толщины. Между собой пластины изолируются. Дополнительная мера – изменение свойств самого материала, позволяющее увеличить порог магнитного насыщения.

Чтобы не допустить разрыва магнитного потока с возникновением поля рассеивания, пластины тщательно подгоняют в процессе набора. Отдельные элементы шлифуют, с получением гладкой, идеально прилегающей поверхности.

Также потери снижаются за счёт более полного заполнения окна магнитопровода. Это позволяет обеспечить оптимальные показатели массы и габаритов агрегата.

Холостой ход трансформатора – режим, при котором можно рассчитать важные характеристики. Это проводится для оборудования, находящегося в эксплуатации и на стадии проектирования.

Источник

Холостой ход трансформаторов: измерение потерь, параметры, периодичность, схема опыта

hol hod 4Что такое холостой ход (ХХ) трансформатора?

Величина потерь силового трансформатора состоит из так называемых потерь в меди и потерь в стали. Первые связаны с протеканием тока нагрузки через проводники обмоток, имеющие определенное электрическое сопротивление. Потери же в стали обусловлены вихревыми токами, токами намагничивания, возникающими в магнитопроводе.

Орлов Анатолий Владимирович

Поэтому этот опыт позволяет измерить мощность потерь в стали, называемыми потерями холостого хода.

Дополнительно, подключив вольтметр к оставшейся разомкнутой обмотке, можно измерить на ней напряжение, и по показаниям двух вольтметров рассчитать коэффициент трансформации. Но это измерение к самому опыту холостого хода не относится.

Опыт холостого хода при вводе в эксплуатацию подвергаются

  • Все сухие трансформаторы, а также имеющие в качестве изолирующей и охлаждающей среды жидкий негорючий диэлектрик.
  • Маслонаполненные трансформаторы, мощность которых более 1600 кВА.
  • Трансформаторы собственных нужд электростанций, вне зависимости от их мощности.

В эксплуатации такие измерения проводятся только для трансформаторов с мощностью 1000 кВА и более, и только после капитального ремонта, связанного со сменой обмоток или ремонтом магнитопровода.

По сетевым правилам возможно проведение измерений по распоряжению технического руководителя предприятия после того, как хроматографический анализ газов, растворенных в масле, дал настораживающие результаты. Но это касается только силовых трансформаторов с обмотками на напряжение 110 кВ и выше.

Порядок и схема измерения

Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения. Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины.

Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода. При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.

hol hod 1

Васильев Дмитрий Петрович

Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами.

Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.

Абрамян Евгений Павлович

Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.

При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.

hol hod 2

Анализ результатов измерения холостого хода

При приемосдаточных испытаниях и капитальном ремонте полученные данные сравниваются с протоколом о соответствующих испытаниях, проведенных на заводе после изготовления трансформатора. Расхождение более 5 % не допускается.

Для однофазных трансформаторов в этих же случаях мощность потерь не должна отличаться от исходной величины более, чем на 10%.

В эксплуатации измеряется только ток холостого хода на основании опыта с номинальным напряжением или мощность потерь при пониженном. ПТЭЭП при этом не нормирует отклонения от нормы.

Однако, при подозрении на повреждение в трансформаторе метод измерения потерь с использованием трех последовательно проведенных опытов дает очень ценный результат. Поскольку обмотки фаз трансформатора находятся в неравных условиях, то можно не только вычислить, есть ли там дефект, но и определить дефектную фазу.

hol hod 3

Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект.

Читайте также:  Руки сильно бьют током

Источник



Измерение тока и потерь холостого хода

В соответствии с требованиями ПУЭ производится одно из измерений:
а) при номинальном напряжении. Измеряется ток холостого хода. Значение тока не нормируется;

Рис. 2.7. Схема проверки группы соединения обмоток силового трансформатора методом фазометра.


Рис. 2.8. Схемы проверки группы соединения обмоток силовых трансформаторов методом двух вольтметров.

б) при малом напряжении. Измерение производится с приведением потерь к номинальному напряжению или без приведения (метод сравнения).
Опытом холостого хода трансформатора называется включение одной из его обмоток (обычно низкого напряжения) под номинальное напряжение. Потребляемый при этом ток называют током холостого хода Iхх (обычно выражают в % от Iном).

Таблица 2.10. Векторные диаграммы и расчетные формулы для определения группы соединения силовых трансформаторов

Примечание: Формулы табл. 2.10


где U2 > и Кл соответственно линейное напряжение на зажимах обмотки низшего напряжения и линейный коэффициент трансформации.

Потребляемую при этом активную мощность называют потерями холостого хода Рхх (кВт). Эта мощность расходуется, в основном, на перемагничивание электротехнической стали (потери на гистерезисе) и на вихревые токи. Ток и потери холостого хода являются паспортными данными силовых трансформаторов.

Потери холостого хода трансформаторов Рхх, измеренные при нормальной частоте и весьма малом возбуждении (порядка нескольких процентов от номинального напряжения трансформатора), можно пересчитать к потерям холостого хода при номинальном напряжении по формуле

где Р’хх= Ризм – Рпр потери, измеренные при подводимом при измерении напряжении (возбуждении) U;
Рпр и Ризм — соответственно мощность, потребляемая приборами и суммарные потери в трансформаторе и приборах.
n — показатель степени, равный для горячекатаной стали 1,8; для холоднокатаной стали — 1,9.

Заводы-изготовители производят измерения потерь холостого хода при номинальном напряжении и при малом (обычно 380 В) напряжении.

Измерение потерь холостого хода может быть произведено также при напряжении, равном 5 — 10% номинального. Отличие полученных значений потерь от заводских данных должно быть не более 10% для однофазных и не более 5% для трехфазных.

Измерение потерь холостого хода производится при напряжении и по схемам, указанным в протоколе испытания завода-изготовителя.

Если завод-изготовитель производил измерения потерь холостого хода только при номинальном напряжении трансформатора, то следует измерение потерь холостого хода произвести при напряжении 380 В и выполнить пересчет их к номинальному напряжению по формуле, указанной выше.

В дальнейшем измерение потерь холостого хода следует производить при напряжениях 380 В. У исправных трехфазных трехстержневых трансформаторов соотношение потерь, как правило, не отличается от соотношений, полученных на заводе-изготовителе, более, чем на 5%.

Для трансформаторов, имеющих переключающее устройство с токоограничивающим реактором, дополнительно производится опыт холостого хода на промежуточном положении «Мост».

Измерение потерь холостого хода при напряжении 380 В следует производить до измерения сопротивления обмоток постоянному току и прогрева трансформатора постоянным током.

При измерении потерь и тока холостого хода следует применять измерительные приборы класса точности 0,5. Для измерений могут использоваться переносные измерительные комплекты типа К-50 (К-51).

При измерении потерь и тока холостого хода при номинальном напряжении обмоток выше 0,4 кВ рекомендуется применять измерительные трансформаторы класса точности 0,2.

Потери холостого хода трехфазных трехстержневых трансформаторов измеряют при трехфазном или однофазном возбуждении.

При трехфазном возбуждении измерения производят двумя однофазными ваттметрами или одним трехфазным ваттметром (см. рис. 2.9).

Измеренные потери определяются как алгебраическая сумма потерь, измеренных каждым ваттметром. Потери в трансформаторе определяют как разность измеренных суммарных потерь и потерь в приборах (см. рис. 2.10), поскольку потери в приборах могут быть соизмеримы с потерями холостого хода.


Рис. 2.9. Схемы включения приборов при проведении опыта холостого хода силовых трансформаторов.
а — для однофазных трансформаторов; б — для трехфазных трансформаторов.

Ток холостого хода трансформатора определяют как среднеарифметическое значение токов трех фаз.

При измерении потерь холостого хода при однофазном возбуждении напряжением 380 В проводят три опыта с приведением трехфазного трансформатора к однофазному путем поочередного замыкания накоротко одной из его фаз и возбуждении двух других фаз.

Первый опыт — замыкают накоротко обмотку фазы А, возбуждают фазы В и С трансформатора и измеряют потери.
Второй опыт — замыкают накоротко обмотку фазы В, возбуждают фазы А и С трансформатора и измеряют потери.

Рис. 2.10. Схемы измерения потерь холостого хода в трехфазных трансформаторов.
а — для измерения суммарных потерь; б — для измерения потерь в приборах.

Соединение первичной обмотки в треугольник

Соединение первичной обмотки в звезду с выведенной нулевой точкой

Группа соединения Υ0/Δ.
Рис. 2.11.а. Схемы возбуждения трехфазных трансформаторов

Третий опыт — замыкают накоротко обмотку фазы С, возбуждают фазы А и В трансформатора и измеряют потери.


Группа соединения Y/Δ


Группа соединения Υ/Υ
Рис. 2.11.6. Схемы однофазного возбуждения трехфазных трансформаторов

Обмотки любой фазы замыкают накоротко на соответствующих выводах одной из обмоток трансформатора. Схемы однофазного возбуждения трехфазного трансформатора для измерения потерь при малом напряжении для различных групп соединений приведены на рис. 2.11.

Потери в трансформаторе при напряжении U’

где U’ — приложенное напряжение при замерах потерь холостого хода;
P’0АВ, Р’0ВС, Р’0АС — потери, определенные при указанных выше опытах (за вычетом потерь в приборах) при одинаковом значении подводимого напряжения.

Приведенные к номинальному напряжению потери трансформатора измеренные при некотором малом напряжении U’ определяются

где n — зависит от сорта трансформаторной стали: для горячекатаной 1,8; для холоднокатаной 1,9.

При отсутствии дефектов и одинаковых значениях подведенного напряжения, приближенные соотношения между значениями фазовых потерь будут следующими:

  • при соединении возбуждаемой обмотки в звезду (с доступной нейтралью) или треугольник потери, измеренные при подведении питания к выводам обмоток фазы «А» и «С» практически одинаковы и, как правило, не менее, чем на 25% больше потерь, измеренных при подведении питания к выводам обмотки средней фазы «В»;
  • при соединении возбуждаемой обмотки в звезду без доступной нейтрали потери, измеренные при подведении питания к выводам «АВ» и «ВС», практически одинаковы, а потери, измеренные при подведении питания к выводам «АС» на 25% больше потерь, измеренных при подведении питания к выводам «АВ» и «ВС».

Необходимо иметь ввиду, что если измеряют потери у нескольких одинаковых трансформаторов (одинаковая трансформаторная сталь и одинаковая величина подводимого напряжения), то у сравниваемых трансформаторов одинаковым значениям потерь холостого хода при номинальном напряжении (указанным заводом-изготовителем), должны соответствовать приблизительно одинаковые значения потерь при малом напряжении. Кроме того, у одинаковых трансформаторов соотношения фазовых потерь должны быть приблизительно равными.

Источник