Меню

Применение резонанса токов в электротехнике

Резонанс переменного электрического тока

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансе

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

схема для питания конденсатора

Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

переключатель резонансной схемы

Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

ток в резонансной схеме равен нулю

Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Читайте также:  В цепи источники тока соединены последовательно

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I 2 конт * R = (V 2 конт / Z 2 ) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Резонансная частота колебаний может быть аппроксимирована следующим образом:

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Источник

Резонансы токов, напряжений и их использование в пассивных фильтрах

Аннотация: терминология фильтров в международных нормативно-правовых актах. Резонансы токов и напряжений в силовых сетях. Настроенные, расстроенные и демпфирующие пассивные фильтры в силовых сетях.

Пассивный фильтр

Если придерживаться формализованной терминологии, то в силовой электронике по IEC 61642 фильтр (filter) — устройство, состоящее из конденсаторов, реакторов и, при необходимости, резисторов. Настроенный или резонансный фильтр (tunedfilter) имеет частоту настройки в диапазоне не более 10 % фильтруемой частоты, расстроенный фильтр (detunedfilter) имеет частоту настройки более, чем на 10 % ниже самой малой по порядку гармоники с наибольшей амплитудой, а демпфирующий фильтр (dampedfilter) имеет низкий импеданс в широкой полосе частот в отличие от «узкополосного» настроенного.

Демпфирующие фильтры

  • считают пассивными по способу демпфирования гармоник — искажения ослабляются за счет потерь при преодолении активного сопротивления цепи в отличие от активных фильтров гармоник (АФГ), где инвертор генерирует токи в противофазе токам гармоник;
  • по факту RLC-цепи, формирующие колебательные контура и использующие в работе специфику резонансов напряжений (реже резонанса токов);
  • в основном используются для поглощения нечетных гармоник, за исключением кратных 3, т. е. 5, 7, 11, 13, 17, 19 и т. д., но могут разрабатываться и для 3-ей гармоники, возникающей между фазой и нейтралью, а также неканонических гармоник в случае формирования цепей демпфирующих фильтров 2-го, 3-го порядков, С- или двойного типа (1 — 4 на рис. ниже соответственно).

Демпфирующие фильтры: 1 — 2-го порядка, 2 — 3-го порядка, 3 — С-типа, 4 — двойного типа

Справка
Наибольшее распространение в промышленных сетях отечественных объектов получили резонансные (настроенные) фильтры с последовательным соединением реакторов, конденсаторов и включением в сеть параллельно по схеме «звезда», реже «треугольник».

Настроенные пассивные фильтры

Настроенные пассивные фильтры с последовательным соединением реакторов, конденсаторов и включением в сеть параллельно по схеме «треугольник» (а) и «звезда» (б)

Резонансы токов и напряжений в силовых сетях

Наиболее лаконичное и грамотное объяснение резонансов дано в IEC 61642, стандарт которого и определяет две следующих концепции.

Seriesresonance. Резонанс напряжений

При последовательном соединении индуктивности и емкости в сети, что приводит к очень низкому сопротивлению в определенном частотном диапазоне, близком к резонансной частоте, и, соответственно увеличению напряжения в местах присоединения нагрузки.

Последовательный резонанс напряжений

Последовательный резонанс напряжений в силовой сети

Импеданс при резонансе напряжений

Импеданс при резонансе напряжений
на частоте гармоники 11 порядка по IEC 61642

Parallelresonance. Резонанса токов

При параллельном соединении индуктивности и емкости в сети, что обуславливает очень высокое сопротивление в определенном частотном диапазоне, близком к резонансной частоте, и, соответственно скачкообразное увеличение амплитуд токов через нагрузку.

Параллельный резонанс

Параллельный резонанс токов в силовой сети

Импеданс при резонансе токов

Импеданс при резонансе токов на частоте гармоники 11 порядка по IEC 61642

Настроенные, расстроенные и демпфирующие пассивные фильтры в силовых сетях

На текущий момент наиболее целесообразными для подавления гармоник в силовых сетях объектов остаются шунтирующие резонансные фильтры, настраиваемые на частоту гармоники с наибольшей амплитудой.

Читайте также:  Почему сила тока измеряется в амперах

Расстроенные фильтры в виде автономных колебательных LC-контуров применяют для снижения рисков пробоя конденсаторов в установках повышения коэффициента мощности УКРМФ, демпфирующие (широкополосные) пассивные фильтры— для подавления искажений оборудования с (условно) статичным спектром гармоник, но в условиях отсутствия (или учета) в сети УКРМ, с которыми они могут войти в параллельный резонанс.

При проектировании резонансных фильтров измеряют импеданс распределительного трансформатора, анализируют частотный спектр источника гармонических возмущений (и в сети), при наличии нескольких гармоник с большими амплитудами формируют комплектное устройство с модулями-фильтрами, подсоединяемыми параллельно и настроенными на соответствующие частоты.

Важно
Нередко причиной высоких гармонических искажений в силовой сети объекта является трансмиссия гармоник из сетей другого уровня напряжения и/или балансовой принадлежности, что уже формализовано в ГОСТ IEC/TR 61000-3-6-2020 и ГОСТ IEC/TR 61000-3-7-2020. Поэтому оптимальным вариантом проектирования фильтра можно признать анализ гармонического спектра сети, как в часы пиковых нагрузок, так и ненагруженной, что позволит определить реальные доли эмиссии и трансмиссии гармонических возмущений и предъявить рекламации виновнику согласно правилам и границам ответственностей ГОСТ IEC/TR 61000-3-7-2020.

На фундаментальной частоте благодаря конденсаторам шунтирующий резонансный фильтр работает, как компенсатор реактивной мощности, что следует учитывать при наличии установок повышения коэффициента мощности для исключения рисков перекомпенсации. Модуля в блоке пассивного фильтра могут подключаться одновременно или отдельно, но только последовательно в порядке возрастания частот настройки (5, 7, 11 и т. д.), а отключаются в обратном порядке.

Полное сопротивление блока пассивного фильтра

Полное сопротивление блока пассивного фильтра из 4 резонансных контуров, настроенных на гармоники 5, 7, 9 и 11 порядков (сверху) и зависимость импеданса каждого модуля от частоты

По рекомендациям IEC 61642 в силовых сетях с шести- и двенадцати импульсными ШИМ-преобразователями целесообразно применять резонансные фильтры 5, 7, 11 и 13-й высших гармоник или, в зависимости от реального уровня помех, только 5, 5 и 7, 5 и 11-й гармоники. В сетях с 12-импульсными ШИМ преобразователями рациональны фильтры с настройкой по частотам 11 и 13 или только 11-й высших гармоник. В силовых сетях с электролизными установками, электродуговыми печами, сварочными автоматами целесообразными будут резонансные фильтры 3, 5 и 7 или 3 и 5-й гармоник.

Источник: Завод конденсаторных установок «МИРКОН»

Источник

Резонанс токов и его полезное применение в электротехнике

Резонансом в физике называют явление, при котором амплитуды колебания системы резко возрастают. Это происходит при совпадении собственной и внешней возмущающей частот. В механике примером может служить маятник часов. Подобное поведение характерно и для электрических схем, включающих в себя элементы активной, индуктивной и емкостной нагрузки. Резонанс токов и напряжений очень важен, это явление нашло применение в таких областях науки, как радиосвязь и промышленное электроснабжение.

резонанс токов

Векторы и теория

Для понимания смысла процессов, происходящих в цепях, включающих катушки индуктивности, конденсаторы и активные сопротивления, следует рассмотреть схему простейшего колебательного контура. Подобно тому, как обычный маятник попеременно переводит энергию из потенциального в кинетическое состояние, электрический заряд в RCL-цепочке, накапливаясь в емкости, перетекает в индуктивность. После этого процесс происходит в обратном направлении, и все начинается сначала. При этом векторная диаграмма выглядит следующим образом: ток емкостной нагрузки опережает на угол π/2 направление напряжения, индуктивная нагрузка отстает на такой же угол, а активная совпадает по фазе. Результирующий вектор имеет наклон по отношению к абсциссе, обозначаемый греческой буквой φ. Резонанс в цепи переменного тока наступает тогда, когда φ=0, соответственно, cos φ = 1. В переводе с языка математики эта выкладка означает, что ток, проходящий по всем элементам, по фазе совпадает с током в активной составляющей электросхемы.

резонанс в цепи переменного тока

Практическое применение в системах электроснабжения

Теоретически все эти выкладки понятны, но что они значат для практических вопросов? Очень многое! Всем известно, что полезная работа в любой схеме выполняется активной составляющей мощности. При этом большая часть потребления энергии приходится на электродвигатели, которых на любом предприятии немало, а они содержат в своей конструкции обмотки, представляющие собой индуктивную нагрузку и создающие угол φ, отличный он нуля. Для того чтобы возник резонанс токов, необходимо скомпенсировать реактивные сопротивления таким образом, чтобы их векторная сумма стала нулевой. На практике это достигается включением конденсатора, который создает противоположный сдвиг вектора тока.

Читайте также:  Как изменяется направление тока в якоре

резонанс токов и напряжений

Резонанс токов в радиоприемных устройствах

Резонанс токов имеет и другое, радиотехническое применение. Колебательный контур, составляющий основу каждого приемного устройства, состоит из катушки индуктивности и конденсатора. Меняя величину электрической емкости, можно добиться того, что сигнал с требуемой несущей частотой будет приниматься избирательно, а остальные всеволновые составляющие, принимаемые на антенну, включая и помехи, окажутся подавленными. На практике такой переменный конденсатор выглядит как два набора пластин, один из которых при вращении входит или выходит из другого, увеличивая или уменьшая при этом электрическую емкость. При этом создается резонанс токов, а радиоприемник оказывается настроенным на нужную частоту.

Источник



Резонанс тока

В процессе изучения электротехники довольно часто возникает вопрос, что такое резонанс токов. Подобное явление характерно в основном для цепей переменного тока и может обладать как полезными, так и нежелательными свойствами, которые следует учитывать при проектировании различных схем. Явление резонанса часто применяется в радиотехнике. Настройка колебательного контура, связанного с этим свойством, дает возможность усиления радиосигнала в несколько раз, поскольку преобразование емкости-индуктивности приводит к возрастанию действующего напряжения.

Принцип действия резонансных токов

Наглядное представление о резонансе токов дает колебательный контур, применяемый в электронных схемах. В его состав входит конденсатор с емкостью С и катушка с индуктивностью L, включенные параллельно. В процессе передачи энергии из электрического поля емкости в магнитное поле индуктивности возникают самозатухающие колебания с определенной частотой. Возникновение колебаний происходит благодаря активному сопротивлению R, препятствующему свободному прохождению тока.

Резонанс тока

Явление резонанса токов появляется в цепи, куда параллельно включены конденсатор и катушка. Их номиналы подобраны с таким расчетом, чтобы токи, протекающие по С и L, были равны. Поэтому в контуре С-L ток будет выше, чем его значение на остальных участках цепи.

Принцип работы такого контура заключается в следующем. При подаче питания конденсатор накапливает определенную величину заряда, равную номинальному напряжению источника тока. После этого источник отключается, а конденсатор замыкается в цепь контура, чтобы на катушку пошел разряд. Ток проходит по ней, тем самым вызывает генерацию магнитного поля. В результате создается электродвижущая сила самоиндукции, направленная навстречу току.

Максимальное значение магнитного поля достигается при полном разряде конденсатора. Таким образом, вся энергия, накопленная конденсатором, преображается в магнитное поле индуктивности. Заряженные частицы продолжают двигаться, благодаря самоиндукции катушки.

Поскольку противоток от разряженного конденсатора уже отсутствует, он подвергается повторной зарядке, но уже с изменившейся полярностью. Это приводит к преобразованию поля катушки в заряд конденсатора и повторению всего процесса. Активная составляющая R приводит к постепенному угасанию колебаний. В этом и заключается основная суть резонанса.

Практическое использование резонанса токов

Резонанс токов широко используется на практике. В случае изменения величины емкости конденсатора или индуктивности контура, становится возможной регулировка частоты свободных колебаний. Таким образом, контур может быть настроен на определенную частоту.

Природа свободных электрических колебаний, возникающих в контуре, всегда затухающая. Колебания затухают постепенно под влиянием сопротивления, которым обладают соединительные провода. Кроме того, энергия затрачивается на нагрев провода катушки индуктивности при прохождении в контуре электрического тока. Потери энергии приводят к постепенному снижению амплитуды колебаний и их окончательное затухание. Сопротивление контура оказывает непосредственное влияние на скорость затухания колебаний, связанную с потерями энергии.

Для электронных устройств очень важно иметь возможность получения незатухающих электрических колебаний с неизменной амплитудой в течение продолжительного времени. Для обеспечения этого процесса выполняется подключение к контуру генератора переменного тока. В результате, частота вынужденных колебаний не будет зависеть от емкости и индуктивности контура, а будет находится в зависимости от частоты переменного тока, вырабатываемого генератором.

Необходимо соблюдать условия, когда токи в емкости и индуктивности имели бы одинаковое значение. Это важное свойство дает возможность регулировок на любых участках электронных схем.

Источник