Меню

Примеры использования электрического тока в технике

Электрический ток в технике

Представить современный мир без техники, равно как и без электричества невозможно. Работа значительной части приборов основывается на получении энергии электрического тока. Вне зависимости от того, получает ли техника питание от сети или от аккумуляторной батареи, электроэнергия – это основа работы практически всех современных устройств.

Электрические явления в технике

Хотя электричество и обеспечивает работу техники, для самого оборудования оно представляет не меньшую опасность, чем для человека. Особенно это касается электронных приборов. Микросхемы крайне чувствительны к воздействию даже самого маленького тока. Небольшое короткое замыкание выводит микросхемы из строя.

В промышленности значительный риск представляет собой статическое электричество. Наличие мелких веществ, таких как мука, трения одних элементов о другие факторы создают угрозу статических электрических разрядов. Поэтому для безопасности любой техники важно качественное заземление.

Применение и использование электрического тока в технике

Электричество в технике используется повсеместно. В каждом доме можно найти бытовую технику, которая значительно облегчает ведение домашнего хозяйства, избавляет от пыли, копоти и неприятных побочных эффектов применения плит, осветительных приборов и других устройств, которые были актуальны до распространения электричества.

В промышленности переоценить значение электроэнергии практически невозможно. Применение электрического тока позволяет значительно сохранить расходы, этот вид энергии дешевле любого известного горючего.

Электрическое поле в технике

Электрическое поле окружает каждую частицу с положительным или отрицательным электрически зарядом. У положительно заряженной частицы силовые линии поля направляются вовне, а у отрицательной – внутрь.

Главной характеристикой электрического поля является сила действия на частицы, заключающаяся в их взаимной отталкивании, либо притяжении. Электрическое поле является основой действия электроэнергии и обеспечивает работу электротехники.

Техника электрических измерений

Электрические измерения проводятся различными методами. Чаще всего применяют один из четырех техник:

  • непосредственная оценка – заключается в использовании специальных измерительных приборов;
  • нулевой метод – сравнение с определенным показателем;
  • дифференциальный – неполное уравновешивание сравниваемых величин;
  • метод замещения – заключается в использовании двух измерений для ликвидации погрешности.

Техника безопасности в обращении и при работе с электрическим током

Основное правило безопасности при работе с током заключается в том, что в начале каждой работы необходимо обесточить сеть. Любое напряжение выше 24 вольт считается опасным для человека.

При работе с напряжением выше этого показателя необходим специальный допуск. Чем выше напряжение, тем серьезнее нужен допуск к работе. В процессе работ важно использовать специальные инструменты с высокой степенью электрозащиты.

Техника безопасности от поражения электрическим током

При работе с электричеством важно соблюдать следующие правила:

  1. Нельзя проводить ремонт включенного в сеть прибора.
  2. Во время проведения работ на щитке должно висеть предупреждение.
  3. Работать с высоким напряжением можно только вдвоем.
  4. Важно следить за изоляцией всех проводов и правильным заземлением.

Производители и поставщики электрической техники

Производством и поставками электрической техники для разных отраслей хозяйства занимаются разные компании, среди которых можно выделить такие, как:

  • «Уральский завод бытовых изделий» специализируется на бытовой электрической технике для дома;
  • ОАО «Ярославский электромашиностроительный завод» (ОАО «ELDIN»), ЯЭМЗ – один из основных производителей электродвигателей в России;
  • Аусблик – отечественный поставщик электрооборудования.

В списке производителей и поставщиков из числа зарубежных компаний:

  • Xinming Cable Machinery – одна из крупнейших производственных компаний Китая;
  • Elektrolight – поставщик качественной электротехники различных марок;
  • IEK – один из лидеров в области производства промышленной электротехники.

Эти и другие компании обеспечивают широкий выбор электрической техники для самых разных нужд.

Больше об электрическом токе в технике, правилах безопасности в обращении, при работе с электрическим током, можно узнать на выставке «Электро».

Источник

Примеры действия электрического тока

Конспект по физике для 8 класса «Примеры действия электрического тока». Какие примеры иллюстрируют различные действия электрического тока.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

ДЕЙСТВИЕ ТОКА НА ЧЕЛОВЕКА

Тело человека является проводником электрического тока, который, проходя через организм человека, может производить тепловое, химическое, механическое, биологическое и другое воздействие.

При тепловом действии происходит перегрев и функциональное расстройство органов на пути прохождения тока, возникают ожоги.

Химическое действие тока выражается в электролизе жидкости в тканях организма, в том числе крови, и нарушении её физико-химического состава.

Механическое действие связано с сильным сокращением мышц, вплоть до их разрыва.

Биологическое действие тока выражается в раздражении и перевозбуждении нервной системы.

Действия электрического тока на организм человека используют в медицине.

Дефибрилляторы используют для восстановления ритма сердечной деятельности путём воздействия на организм кратковременных высоковольтных электрических разрядов. При радикулите, невралгии и некоторых других заболеваниях применяют гальванизацию: через тело человека пропускают слабый электрический ток, который оказывает болеутоляющее действие и улучшает кровообращение.

Читайте также:  Super nova 75d23l пусковой ток

Вы смотрели Конспект по физике для 8 класса «Примеры действия электрического тока».

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Читайте также:  Схема электроснабжения тяговых подстанций переменного тока

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Что происходит сейчас, и где человек использует электричество

Что происходит сейчас, и где человек использует электричество

В современном мире электричество играет наиболее важную роль, без него нельзя представить ни одну сферу нашей жизни. Вы просыпаетесь по будильнику, который звенит утром. А питается он как раз электроэнергией. А засыпаете, когда гасите ночник. На страже вашего спокойствия находится сигнализация, о приходе гостей оповестит дверной звонок, а потом вы включите электрический водонагреватель, чтобы принять утренний душ. Всё начинается с электричества, им же и заканчивается каждый день, вне зависимости от выходных и праздников. Но ваши бытовые потребности были бы не покрыты, если бы эта энергия не получила широкое распространение в промышленности.

Где применяется электричество

Рассмотрим основные укрупненные сферы, где электричество используется чаще всего:

  • Химическая промышленность. Реакции электролиза, постоянное осаждение и прочие взаимодействия между веществами проходят исключительно в присутствии высокого напряжения. Все любят обладать красивыми хромированными или никелированными предметами, но здесь также участвует электричество. Процедуры химической очистки, разделения и соединения делают в присутствии пары электродов. Подогрев субстанция производится мощнейшими ТЭН, позволяющими контролировать процесс с минимальной погрешностью.
  • Освещение. Чрезвычайная опасность костров, лучин и прочих открытых источников огня не оценивается до тех пор, пока мы щёлкаем выключателем, и загорается светодиодная лампочка. Ровный счёт с отрегулированными параметрами позволил сохранить зрение миллионам людей. Сейчас эффективность осветительных приборов несоразмерна прошлому поколению ламп с нитями накаливания. Продукция высоких технологий теперь доступна каждому человеку. Эти лампочки не представляют вреда для окружающей среды.

Освещение

  • Выращивание овощей и фруктов в закрытых теплицах позволило избежать в мире глобального голода. Подобные явления уже неактуальны именно благодаря точному контролю параметров. Современные цветоводы не зависят от сезона, именно поэтому можно дарить букеты в любое время года, а также есть свежие помидоры, когда на улице бушует метель и трещат сильнейшие морозы. Необходимо купить фитолампы, чтобы достичь такого эффекта. Они имеют большое количество модификаций, но каждая из них позволяет полностью имитировать солнечные лучи. Всё быстро поспевает благодаря практически круглосуточной подсветке. Это отличное решение для любителей кактусов. Можно добиться цветения практически любого экземпляра.
  • Электрические инструменты. Представьте выполнение ремонта без дрели, болгарки и сварочного аппарата. Вы не сможете сделать ничего, придётся в строительстве снова возвращаться к саманным блокам и брёвнам, потому что ничего другого вы сделать не сможете. Профессия строителя сейчас является достаточно трудоёмкой, а без соответствующего электроинструмента процесс будет замедлен как минимум в 10 раз, а некоторые операции не будут представляться возможными. Взять хотя бы сверление металла.

    Электроинструменты в строительстве

  • Возможность использования бытовых электроприборов в любое время. Вы можете выйти из душа (вода в котором также подогревается бойлером), а потом высушить волосы феном и пойти на улицу в холодную погоду. Всё это является благами цивилизации, к которым мы привыкли, но не замечаем их в ежедневном использовании.
  • Приготовление пищи при помощи электропечей является одним из важнейших достижений современного мира. Всегда можно выставить температуру строго по рецепту, что позволит получить 100% результат. Именно поэтому профессионалы никогда не используют газовые плиты. Также доступно большое количество опций, таких как вращение вертела для гриля и конвекции, позволяющей пропекать толстый слой теста или мяса.
  • Читайте также:  Выберите правильное определение назначения компенсационной обмотки ко машины постоянного тока

    Пользуемся и наслаждаемся цивилизацией

    Все, что имеется в вашем доме, обязательно создано при участии электроэнергии. Огромные фабрики работают круглосуточно, производя продукцию высшего качества, что позволяет существенно поднять уровень жизни. Мы не видим этого, но всё сразу станет заметно, если всё отобрать в один момент. Поэтому у человечества в этой сфере нет другого пути, кроме развития.

    Источник

    

    Применение электричества

    Применение электричества

    Возможно ли представить современную жизнь без электричества? Нет электричества – и остановились все фабрики и заводы, выключились компьютеры в офисах, погас свет в магазинах и домах. Применение электричества сегодня настолько широко, что мы порой даже не замечаем его и не задумываемся, какой бы была наша жизнь без этого чудесного явления.

    Первое применение электричества

    Интерес к такому явлению, как электричество сопровождал жизнь людей с самых древних времен. Первым его исследователем стал древнегреческий философ Фалес. Еще в VII в. до н.э. он обратил внимание, что если потереть янтарь кусочком шерсти, то янтарь начинает притягивать к себе ткань. Не случайно электричество и получило свое название от древнегреческого слова «электрон», что в переводе означает «янтарь». Однако долгое время полезное свойство, обнаруженное Фалесом, никак не использовалось (хотя, например, Аристотель исследовал электрические свойства угрей, которые им использовались против своих врагов).

    Лишь в 17 веке появился и термин «электричество» и первые серьезные исследования в этой области. Термин ввел английский ученый Уильям Гилберт в своей книге «О магните, магнитных телах и большом магните – Земле», который в результате опытов выявил, что электризоваться может не только янтарь, но и другие предметы. Уильям ГилбертВ этот же период Отто фон Герике была создана первая электростатическая машина. Она представляла собой серный шар на металлическом стержне и могла не только притягивать, но и отталкивать предметы. Но еще очень долго электричество не приносило никакой практической пользы, хотя это явление будоражило умы многих ученых и активно изучалось ими. 18-19 века прошло под знаком активного исследования явления элекричества, были выявлены его многие полезные свойства. В частности, возможность передачи электрической энергии на некоторые расстояния, наличие тока в молнии и мышцах животных.

    Отто фон Герике

    Конец 18- начало 19 веков ознаменовано изучением практической ценности электричества. В частности, ученый Вольта создает источник постоянного тока, который носит название гальванического элемента. В числе титулованных ученых, занимавшихся изучением электричества, нельзя не упомянуть Майкла Фарадея, который основал учение об электромагнитных полях, ввел многие термины и законы. ФарадейИменно он стал создателем самого первого генератора электроэнергии, что стало основополагающим открытием в последующем развитии и распространении электричества. Ему же принадлежит честь создания первого электродвигателя, что сделало электричество уже не абстрактной научной субстанцией, а изобретением, полезным на практике.

    Область применения электричества

    Сказать, что сегодня область применения электричества широка – это не сказать практически ничего. Пожалуй, сложно найти сферу, где электричество е применялось бы.

    Конечно, самый очевидный и общедоступный способ применения электроэнергии, о котором знает даже ребенок, — это освещение. Эта система освещения получила свое распространение с изобретением ламп накаливания русским электротехником А.Н. Лодыгиным во второй половине XIX века. Первые лампы состояли из закрытого сосуда без кислорода и со стержнем из угля внутри. Замена свечного освещения на электрическое существенно повысило пожарную безопасность.

    Сфера применения электричества не ограничивается освещением. Оно также широко применяется для передачи информации. Такие устройства, как телефоны, телеграф, радио и телевидение не смогли бы работать без электричества.

    Все мы с детства знаем виды транспорта, работающие на электроэнергии – это трамваи, троллейбусы, поезда, в том числе и в метро. Из-за роста цен на бензин все большее распространение получается и частный электротранспорт, например, на Западе уже достаточно широко используются электромобили.

    Электричество достаточно широко применяется в сфере отопления или охлаждения. Надо отметить, что электрическое отопление является достаточно дорогим и ресурсозатратным, поэтому в некоторых странах оно запрещено к применению. А вот системы конидиционирования воздуха, работающие с применением электроэнергии, используются практически повсеместно.

    Работа бытовой и офисной техники также невозможна без электричества – это утюги, стиральные и посудомоечные машины, электроплиты, принтеры, сканеры и многое другое. Не смогут работать без электроэнергии и компьютеры и планшеты, без которых сложно представить современную жизнь. Ведь приходя домой вечером, мы обязательно ставим свой телефон или планшет на зарядку, которая происходит от электрической розетки.

    Электроэнергия широко применяется для таких процессов, как производство и обработка материалов (без электричества не работали бы аппараты для сварки, сверления, резки).

    Еще одной сферой, где сегодня достаточно широко применяется электричество, является медицина. Многие обследования и процедуры были бы невозможны без него (электрофорез, электрокардиограмма и многие другие).

    Электростанция

    Очень важным вопросом сегодня является генерация электроэнергии. Для этого создаются электростанции.Все большее распространение получают электростанции, работающие за счет природных явлений – солнца, ветра, приливов.

    Благодаря существованию линий электропередач (ЛЭП) электроэнергию возможно передавать на очень большие расстояния. Это позволяет электрифицировать даже самые отдаленные уголки (хотя, стоит отметить, что по информации Всемирного банка, существует большое число стран, где электроэнергия практически не используется, больше миллиарда людей на Земле не пользуются электричеством. Но как правило, это представители достаточно отсталых стран, например, в Африке).

    Для хранения электроэнергии применяются всем нам знакомые аккумуляторы и батареи. Сегодня их можно приобрести практически в любом магазине, в любой точке планеты.

    Источник