Меню

Примеры решения задач цепи синусоидальных токов

Помощь студентам в учёбе

Помощь студентам в учёбе

Я, Людмила Анатольевна Фирмаль, бывший преподаватель математического факультета Дальневосточного государственного физико-технического института со стажем работы более 17 лет. На данный момент занимаюсь онлайн обучением и помощью по любыми предметам. У меня своя команда грамотных, сильных бывших преподавателей ВУЗов. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И не важно: она по объёму на две формулы или огромная сложно структурированная на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.

Срок выполнения разный: возможно онлайн (сразу пишите и сразу помогаю), а если у Вас что-то сложное – то от двух до пяти дней.

Для качественного оформления работы обязательно нужны методические указания и, желательно, лекции. Также я провожу онлайн-занятия и занятия в аудитории для студентов, чтобы дать им более качественные знания.

У меня конфиденциальность и безопасность высокого уровня. Никто не увидит Ваше задание, кроме меня и моих преподавателей, потому что WhatsApp и Gmail — это закрытые от индексирования системы , в отличие от других онлайн-сервисов (бирж и агрегаторов), в которые Вы загружаете своё задание, и поисковые системы Yandex и Google индексируют всё содержимое файлов, и любой пользователь сможет найти историю Вашего заказа, а значит, преподаватели смогут узнать всю историю заказа. Когда Вы заказываете у меня — Вы получаете максимальную конфиденциальность и безопасность.

Моё видео:

Помощь студентам в учёбе

Как вы работаете?

Вам нужно написать сообщение в WhatsApp (Контакты ➞ тут) . После этого я оценю Ваш заказ и укажу срок выполнения. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за заказ, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл заказа в личные сообщения.

Сколько может стоить заказ?

Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения заказа?

Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить заказ?

Сначала пришлите задание, я оценю, после вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Какие гарантии и вы исправляете ошибки?

В течение 1 года с момента получения Вами заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе

Помощь студентам в учёбе

Качественно сфотографируйте задание, или если у вас файлы, то прикрепите методички, лекции, примеры решения, и в сообщении напишите дополнительные пояснения, для того, чтобы я сразу поняла, что требуется и не уточняла у вас. Присланное качественное задание моментально изучается и оценивается.

Помощь студентам в учёбе

Помощь студентам в учёбе

Теперь напишите мне в Whatsapp или почту (Контакты ➞ тут) и прикрепите задания, методички и лекции с примерами решения, и укажите сроки выполнения. Я и моя команда изучим внимательно задание и сообщим цену.

Помощь студентам в учёбе

Помощь студентам в учёбе

Если цена Вас устроит, то я вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Помощь студентам в учёбе

Помощь студентам в учёбе

Мы приступим к выполнению, соблюдая указанные сроки и требования. 80% заказов сдаются раньше срока.

Помощь студентам в учёбе

Помощь студентам в учёбе

После выполнения отправлю Вам заказ в чат, если у Вас будут вопросы по заказу – подробно объясню. Гарантия 1 год. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе






of your page —>

Можете смело обращаться к нам, мы вас не подведем. Ошибки бывают у всех, мы готовы дорабатывать бесплатно и в сжатые сроки, а если у вас появятся вопросы, готовы на них ответить.

В заключение хочу сказать: если Вы выберете меня для помощи на учебно-образовательном пути, у вас останутся только приятные впечатления от работы и от полученного результата!

Жду ваших заказов!

С уважением

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения

Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

В этих выражениях:

u(t), i(t) – мгновенные значения,

Um, Im – максимальные или амплитудные значения,

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ψu, ψi – начальные фазы,

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Читайте также:  При разомкнутой цепи эдс источника тока равна работе совершаемой

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

и реактивной проводимостью емкости или емкостной проводимостью BС:

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

ψi = – φ, поэтому i = Im sin(ωt – φ)

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

1. Полное сопротивление Z:

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

3. Полная проводимость Y:

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

Решение типовых задач

Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

Задача 1.1

К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

Решение.

По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

Реактивное сопротивление Х индуктивности L на частоте

Амплитудные значения напряжений uR и uL:

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

Зависимости uR(ωt); uL(ωt); uRL(ωt) представлены на рис. 1.9.

Задача 1.2

К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

С = 79,62 мкФ.

Решение.

Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

Полное сопротивление цепи:

– напряжения на резисторе R: ;

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

Начальная фаза тока i определяется из соотношения . Откуда,

Мгновенные значения тока и напряжений на участках цепи:

Читайте также:  Темновой ток что это такое

Задача 1.3

Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

U = 10 В; I = 2 А; φ = 30 о .

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение.

Имеем по определению:

Задача 1.4

По цепи по схеме рис. 1.10 действующие значения тока i на частотах

f1 = 500 Гц и f2 = 1000 Гц равны, соответственно, I1 = 1 А и I2 = 1,8 А.

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

Решение.

По определению на частотах f1 и f2 имеем:

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8 ←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Задача 1.5

Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Решение.

Действующее значение тока

Задача 1.6

Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение.

Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

По закону Ома U = IRR = 0,1∙430 = 43 В.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

Задача 1.7

Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Решение.

Определяем действующее значение тока i

Полное сопротивление цепи

Определяем действующее значение напряжения u

Задача 1.8

Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

A → 0,5 A, U → 100 B, W → 30 Вт.

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ˂ Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

Эквивалентное активное сопротивление

Эквивалентное реактивное сопротивление

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ˂ I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

Эквивалентная активная проводимость

Эквивалентная реактивная проводимость

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 85236 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Примеры расчета электрических цепей синусоидального тока

date image2015-04-01
views image6246

facebook icon vkontakte icon twitter icon odnoklasniki icon

Задача 2.2.1 В электрической цепи, схема которой представлена на рисунке 2.1, известны действующие значения: тока I=2A, входного напряжения Uвх=100В, напряжения на катушке индуктивности Uab=173В и напряжения на конденсаторе Ubc=100В.

Рисунок 2.1 – Схема электрической цепи

1) комплексные сопротивления катушки индуктивности Zкат. и конденсатора ZC;

2) построить векторную диаграмму напряжений;

3) рассчитать активную и реактивную мощности электрической цепи.

Построим векторную диаграмму цепи, начиная с вектора тока, приняв его начальную фазу за ноль. Вектор напряжения на емкости Ubc=100В отстает по фазе от вектора тока на 90 º . Вектор напряжения на реальной катушке индуктивности с потерями опережает вектор тока на угол φкат., меньший, чем 90 º . Складывая векторы напряжений на емкости и катушке индуктивности, получим вектор входного напряжения. В полученном треугольнике известны все стороны – действующие значения напряжений. Определим углы треугольника (см. рисунок 2.3):

Рисунок 2.3 – Векторная диаграмма

Определим значения сопротивлений:

Задача 2.3.2 В цепи синусоидального тока, показанной на рисунке 2.4, дано:

Рисунок 2.4 – Схема электрической цепи

Определить, каким должно быть соотношение амплитуд и сдвиг фаз между напряжениями синусоидальных источников и , чтобы оба эти источника вырабатывали только активную мощность?

Источники будут вырабатывать только активную мощность, если их напряжения и токи совпадут по фазе. По методу узловых потенциалов:

Токи и определяются по закону Ома для участка цепи:

Учитывая, что эти токи должны совпадать по фазе, соответственно, с и , можно записать:

где a и b некоторые действительные числа.

Читайте также:  Как обозначается сила тока в участке цепи

Таким образом, требуемое условие будет выполнено, если

Обозначим Тогда и после подстановки числовых значений получаем

Отсюда имеем два уравнения относительно и :

Таким образом, соотношение амплитуд должно равняться и должна опережать по фазе на 45 ° .

Задача 2.2.3 В трехфазной цепи (см. рисунок 2.5), соединенной треугольником, задано линейное напряжение и сопротивления фаз , .

1) фазные и линейные токи;

2) показания ваттметров;

3) активную мощность системы при обрыве линейного провода фазы «А».

Рисунок 2.5 – Схема трехфазной цепи

Определяем комплексные фазные напряжения и токи. По найденным фазным токам определяем линейные токи.

Определяем показания ваттметров:

Строим векторную диаграмму в аварийном режиме при обрыве линейного провода фазы «А».

Рисунок 2.6 – Векторная диаграмма

Из диаграммы определяем напряжение:

Рассчитываем ток и активную мощность в фазе ab, так как только в ней есть активное сопротивление:

Задача 2.2.4 В схеме, приведенной на рисунке 2.7, ЭДС , и образуют симметричный трехфазный источник напряжения прямой последовательности, а ЭДС , и – симметричный источник обратной последовательности (т.е., , ).

Рисунок 2.7 – Схема трехфазной цепи

Фазные напряжения и частота обоих источников одинаковые, но отстает по фазе от на некоторый угол α. Модули всех сопротивлений равны между собой: XL=XC=R.

Найдите, какое максимальное и какое минимальное линейное напряжение может быть получено на любой паре из точек A, B и C путем изменения угла сдвига фаз α, если фазное напряжение источников Uф равно 220В. Укажите, также, конкретные значения угла сдвига фаз α, при которых одно (любое) линейное напряжение имеет максимальное и минимальное значения.

Общий режим цепи, получающийся в результате наложения двух симметричных режимов прямой и обратной последовательностей, конечно, будет несимметричным, т.е. при определенном значении угла сдвига фаз α модули линейных напряжений UAB, UBC и UCA вообще будут различными. Однако изменением угла сдвига фаз α можно добиться того, что максимальное значение поочередно принимают все три линейные напряжения. Благодаря симметрии всех потребителей эти максимальные (а также минимальные) значения линейных напряжений будут одинаковыми. Поэтому достаточно исследовать только одно линейное напряжение.

Рисунок 2.8 Рисунок 2.9

Ток фазы А в сопротивлении R можно найти наложением токов, полученных для схем на рисунках 2.8 и 2.9. Допустимо также объединение этих двух схем в одну, так как вследствие симметрии потребителей нулевая последовательность отсутствует. Следовательно, введение нулевого провода допустимо как в частных симметричных режимах, так и в общем режиме.

Из этих схем, с учетом того, что XL=XC=R, получим

Отсюда можно выразить линейное напряжение :

Для модуля напряжения имеем .

Далее, для строгого нахождения максимума и минимума UAB следовало бы слагаемые представить в виде: , , , . Затем выделить в действительную и мнимую части и возведением этих частей в квадрат выразить квадрат модуля . После этого дифференцированием по α можно найти экстремальные значения. Однако все эти операции получаются сравнительно громоздкими. Поэтому можно ограничиться более простыми рассуждениями.

Представив в виде , видно, что слагаемые, заключенные в скобки, представляют собой линейные напряжения источников, значения которых не зависят от α и равны .

Таким образом, путем изменения угла сдвига фаз α можно добиться того, чтобы эти напряжения находились в противофазе или совпадали по фазе. В первом случае получим максимальное значение линейного напряжения , а во втором минимальное . Как видно из топографических диаграмм, приведенных на рисунках 2.10 и 2.11, в первом случае (см. рисунок 2.10), а во втором (см. рисунок 2.11).

Рисунок 2.10 Рисунок 2.11

Источник



2.3.7. Примеры решения задач расчета цепи синусоидального тока Задача 1

Расчет цепи с одним источником энергии, представленной на рис. 2.25,а. Значения параметров элементов: R1 = 10 Ом, R2 = R3 = 5 Ом, XL = 5 Ом, XC = 5 Ом. Определить токи в цепи при подводимом напряжении от источника U = 100 B.

Расчет проводится с использованием метода преобразования цепи. Последовательность преобразования цепи показана на рис. 2.25. В отличие от расчета цепи постоянного тока используются векторные представления электрических параметров.

Полное сопротивление Zвc =

Величина тока I:

Величина тока 2 рассчитывается по формуле для делителя тока:

Величина тока 3:

7. Проверка выполнения условия баланса мощности

Мощности в активных элементах цепи:

P1 = R1I 2 = R1 [Ia 2 + Ip 2 ] = 10[7 2 + 2,16 2 ] = 1053,67 = 536,7 Вт;

Суммарная активная мощность, потребляемая цепью:

Мощность реактивных элементов цепи:

QL = XLI 2 = XL [Ia 2 + Ip 2 ] = 5[7 2 + 2,16 2 ] = 553,67 = 268,35 вар;

Суммарная реактивная мощность цепи:

Активная мощность источника:

Рист = Ia = 1007 = 700 Вт.

Реактивная мощность источника:

Qист = Ip = 1002,16 = 216 вар.

Отрицательный знак реактивной компоненты тока указывает, что этот ток по фазе отстает от напряжения. Следовательно, реактивность источника индуктивная и берется со знаком «плюс».

Сравнение результатов расчета показывает, что с учетом погрешности вычислений баланс как активной, так и реактивной мощностей выполняется.

Задача 2

Расчет токов в цепи с двумя источниками ЭДС, схема которой приведена на рис. 2.26,а.

При расчете используется метод межузлового напряжения, величина которого равна (см. рис. 2.26,б):

где 0,00385 – j0,01923 См;

j0,2 См;

0,2 См.

-3,734 – j29,741 B.

-0,2016 – j1,9657 A;

0,9482 + j7,9132 A;

-0,7468 – j5,9482 A.

Для проверки правильности решения используется условие баланса мощности.

Потребляемая активная мощность:

= 10(0,2016 2 + 1,9657 2 ) + (0,7468 2 +

+ 5,9482 2 ) = 39,046 + 179,649 = 218,695 Вт.

Потребляемая реактивная мощность:

= 50(0,2016 2 + 1,9657 2 ) — 5(0,9482 2 +

+ 5,9482 2 ) = 195,23 – 317, 59 = -122,36 вар.

Мощность источника Е1:

100 (-0,2016 + j1,9657) = -20,16 + j196,71 ВА.

Мощность источника Е2:

(43,3 + j25)(0,9482 – j7,9132) = 238,887 – j318,936 ВА.

Активная мощность источников Е1 и Е2:

-20,16 + 238,887 = 218,727 ВА.

Реактивная мощность источников Е1 и Е2:

196,71 – 318,936 = -122,226 вар.

Как видно, условие баланса мощности выполняется.

Источник