Меню

Примеры установки трансформаторов тока

Подключение трансформатора тока — описываем все нюансы

Современная жизнь человека невозможна без электричества. Оно используется во всех отраслях хозяйственной деятельности и в быту. Так как выработка электроэнергии сопряжена с немалыми затратами, для рационального ее использования применяют счетчики электрической энергии. Чтобы счетчик вел учет потребляемой энергии, требуется его установка, а подключается он посредством ввода в схему устройств, которые называются трансформаторами тока. статью ⇒Как снять показания счетчика?

Назначение и конструктивные особенности

Выносные трансформаторы токаВ свою очередь, трансформатор тока — это устройство работающее по принципу электромагнитной индукции и служащее для измерения тока в цепях высокого напряжения, а также для организации систем защиты электрооборудования. То есть для того чтобы измерять ток в цепях с опасным высоким напряжением, например, 6 кВ, нельзя амперметром просто произвести замер, это очень опасно как для персонала, так и для самого прибора. Поэтому основная задача трансформаторов тока — это разделение высоковольтных токонесущих частей и преобразование энергии которая безопасна и для персонала, и для оборудования. Трансформаторы тока (ТТ) широко применяются в релейных защитах на подстанциях и распределительных устройствах. Поэтому к их точности и подключению предъявляются высокие требования. Зачастую первичной обмоткой его служит любая токопроводящая шина или жила кабеля, вторичная обмотка выполняется одиночная или групповая, с несколькими выводами для цепей защиты, контроля и измерения. Также, через трансформаторы тока подключаются и элементы учёта — счётчики электроэнергии.

То есть по назначению трансформаторы тока можно разделить на четыре основные группы:

  1. измерительные;
  2. защитные;
  3. промежуточные;
  4. лабораторные.

Одним из видов переносного устройства являются измерительные клещи. Ими очень легко можно измерять токи в цепях до 1 кВ. Правда, и по току их диапазон измерения очень небольшой, нагрузки в 1000 Ампер им будет измерять проблематично.

Схема восьмерки или включение реле на разность токов двух фаз

На рис. 2.4.9 представлена сама схема соединения, а на рис. 2.4.10, 2.4.11.векторные диаграммы, которые иллюстрируют работу этой схемы.

Как установить трансформатор тока

Высоковольтный выводПо роду и способу установки они делятся на:

  1. Проходные;
  2. Опорные;
  3. Встроенные в электрооборудование;
  4. Для электроустановок до 1 кВ или выше;
  5. Для наружной установки в ОРУ (открытых распределительных устройствах);
  6. Для внутренней установки в ЗРУ (закрытых распределительных устройствах).

Зачастую в цепях с маломощными двигателями и трансформаторами рассчитанных на 1 кВ и ниже установка трансформатора тока не требуется. Это всевозможные понижающие трансформаторы освещения, компрессоры, вентиляторы, обогревательные системы. Вообще, в быту трансформаторы тока устанавливаются крайне редко, разве что на трансформаторах, питающих целые районы или группы домов.

Трансформатор тока подключение

Рассмотрим несколько вариантов подключения трансформаторов тока в цепи трёхфазного напряжения. Схема 1

Схема 2

Эта схема, где три трансформатора тока соединены в звезду, широко применена для защиты цепей от однофазных и многофазных коротких замыканий. Если в цепях протекает ток ниже того, на который настроены реле КА1-КА3, то это называется рабочим нормальным режимом работы и ни одна из защит не будет срабатывать. Ток, который протекает через реле К0 считается как геометрическая сумма токов всех трёх фаз. При увеличении тока в одной из фаз вырастит ток и в цепи защитного трансформатора сработает одно или несколько реле КА1-КА3, в зависимости от места повышения тока. Это необязательно случится при коротком замыкании, даже если нагрузка на контролируемом оборудовании будет выше номинальной, то произведёт отключение. Тем самым спасая дорогостоящее электрооборудование от ненормального режима работы. При замыкании на землю ток появится и в цепи реле К0, тем самым отключая электроустановку.

Схема 3

Схема с трансформаторами применяется для защиты от межфазных замыканий для организации цепей с заземлённой нейтралью. Схема с неполной звездой чаще всего используется для маломощных источников и потребителей, когда существуют и дополнительные виды разнообразных защит.

Такой вид соединения в треугольник, с одной стороны и в звезду с другой — используется в электроустановках для дифференциальной защиты. Схема 4

Подключение трансформаторов тока, таким образом, даёт возможность защиты от межфазных замыканий и превышения тока в каждой из фаз, но отсутствует отключение при коротком замыкании на землю. Поэтому подключается так в исключительных очень редких случаях.

Принцип действия

Работа всех подобных приборов основывается на следующем принципе. У любого устройства есть силовая первичная обмотка. В ней содержится определенное количество витков провода, через который проходит напряжение.

На своем пути току приходится преодолевать препятствие, связанное с полным сопротивлением. В непосредственной близости от катушки создается магнитный поток. Его улавливает магнитопровод. В отношении проходящего тока он должен быть расположен перпендикулярно. При этом процесс превращения магнитной энергии в электрическую будет сопровождаться минимальными потерями.

Таким же образом располагается и вторичная обмотка. При пересечении ее магнитным потоком активируется электродвижущая сила, что приводит к образованию электричества.

Требуется приложение достаточных усилий для преодоления сопротивления катушки и выходной нагрузки. Поэтому возникает снижение напряжения, которое существует во вторичной цепи.

Принцип функционирования трансформатора тока основывается на явлении электромагнитной индукции

Принцип функционирования трансформатора тока основывается на явлении электромагнитной индукции

Особенности функционирования трансформаторов определяются предназначением устройств:

  • Трансформаторы для сварки действуют по принципу максимальной отдачи. Они обладают возможностью выдерживать значительные нагрузки, при которых имеет место высокое напряжение.
  • Работа однофазного трансформатора связана с эффектом, который проявляет магнитный поток. При замыкании вторичной обмотки возникает электродвижущая сила. По закону Ленца наблюдается уменьшение величины магнитного потока. На первичную обмотку однофазных устройств осуществляется подача постоянного тока, потому уменьшения магнитного потока не происходит.

Монтаж трансформатора тока

Перед тем как выполнить непосредственно сам монтаж трансформатора тока необходимо провести его ревизию и проверку сопротивления изоляции. Если она низкая то есть менее 1 кОм на 1 Вольт, то для начала хорошенько просушите его с помощью тепловентилятора или другой тепловой пушки. Сопротивление изоляции стоит при этом проверять каждые полчаса. Во время ревизии также проверяют комплектность устройства, элементов крепежа, состояние фарфоровых диэлектрических частей и корпуса. Осмотреть нужно:

  • колодку вторичных выводов для цепей защиты и контроля;
  • наличие их обозначений, маркировку;
  • паспортную таблицу;
  • состояние резьбы на болтовых соединениях выводов;
  • наличие гаек и шайб.

Перед тем как непосредственно начать монтаж трансформатора тока, конечно же, всё начинается с отключения высоковольтной установки, проверки отсутствия напряжения на токоведущих частях, а также установки переносных заземлений. Всё это является основными мерами безопасности персонала, производящего монтаж. Затем производится разметка в месте установки, и если необходимо то выполняются сверлильные работы в местах крепления конструкции. Если в помещении сыро, то стоит принять меры, препятствующие образованию коррозии (установка сушек и покраска контактных соединений). Запрещается установка трансформатора и монтаж, таким образом, чтобы их корпуса находились вплотную к друг, к другу. Расстояние должно быть не менее 100 мм.

Желательно если есть возможность то таблички с маркировкой должны быть видны из-за ограждений.

Главное правило подключения любого трансформатора тока, это запрет включения его в цепь без нагрузки на вторичной обмотке. Если нет возможности подключить прибор, то их необходимо соединить между собой, чтобы не возникло большое напряжение на ней, которое почти всегда приводит к выходу из строя измерительного устройства.

Классификация

Трансформаторы тока можно разделить в зависимости от целей использования. В соответствии с этим они применяются для измерения либо защиты. Классифицируются они и по ряду других принципов:

  1. Градация в зависимости от рода установки.
  2. Устройства, применяемые для эксплуатации во внешней среде.
  3. Местом использования являются закрытые помещения.
  4. Модели, которые встраиваются вовнутрь электроприборов.

Подключение амперметров через трансформаторы тока

Подключение амперметра

Для измерения силы тока как непосредственно включением прибора в цепь, так и при использовании трансформаторов тока служат амперметры. На рисунке приведена самая распространённая схема подключения. Первый рисунок «а» для однофазной цепи, «б» для цепей трёхфазного напряжения.

Параметры

Как и любое иное электрооборудование, токовые трансформаторы сопряжены с определенными требованиями, которые предъявляются к ним:

  • номинальное напряжение должно находиться в широком диапазоне;
  • величина номинального тока, зависящего от первичной обмотки;
  • вторичный ток, проходящий через вторичную обмотку;
  • величина вторичной нагрузки, характеризующее сопротивление внешней второй цепи.

Все эти данные отражаются в паспорте устройства либо в виде приложенной таблицы.

Трансформаторы тока выпускаются в различных исполнениях в зависимости от назначения и условий эксплуатации

Трансформаторы тока выпускаются в различных исполнениях в зависимости от назначения и условий эксплуатации

Монтаж силовых трансформаторов

Установка силового трансформатора должна выполняться специально обученными бригадами под руководством высококвалифицированных электротехнического персонала. Они должны иметь достаточный опыт по производству этих работ в чётком соответствии с ТТМ 16.800.723–80. Масляные трансформаторы, применяемые в силовых электроустановках, отправлять завод изготовитель может в следующих состояниях:

  1. С залитым полностью маслом и собранные;
  2. Частично разобранные, с герметичным баком, в котором масло залито ниже крышки;
  3. Демонтированные частично без масла, бак заполнен инертным газом;

Все работы по монтажу трансформаторов выполняются в чёткой регламентированной последовательности

  1. Разгрузка электрооборудования после прибытия с завода изготовителя;
  2. Транспортировка к месту установки;
  3. Подготовительные монтажные работы;
  4. Проверка состояния всех обмоток и переключателей;
  5. Установка на выполненный заранее крепкий фундамент;
  6. Монтаж охлаждающей системы и заливка масла, подключение вентиляторов обдува;
  7. Осмотр на отсутствие течи масляной продукции;
  8. Испытание трансформатора и пробное включение выполняется сразу без нагрузки в течение суток.

При этом монтаж трансформаторов лучше и безопаснее производить в светлое время суток.

Меры предосторожности

Эксплуатация трансформаторов тока предполагает соблюдение определенных мер безопасности, поскольку она связана с определенным риском по отношению к здоровью человека:

  1. Существует возможность поражения электротоком, связанная с действием высоковольтного потенциала. Магнитопровод конструктивно выполняется из металла и отличается хорошей проводимостью. Если будут иметь место дефекты в изоляционном слое обмотки, то персоналу грозит возможность получения электротравмы. Для профилактики подобных случаев вывод вторичной обмотки подлежит заземлению.
  2. Работник связан с опасностью поражения высоковольтным потенциалом из-за разрыва вторичной цепи. Ее выводы имеют маркировку «И1» и «И2».
  3. Решения конструкторов при проектировании и производстве подобных устройств, преследует ряд конкретных задач. Если какой-либо параметр не удовлетворяет требованиям, цели достигают путем усовершенствования существующих конструкций. Новый образец еще недостаточно проверен временем, а поэтому, способен таить в себе некоторую опасность.
Читайте также:  Сетевое зарядное устройство с током 2 а

Параллельное соединение трансформаторов тока

Параллельное соединение трансформаторов тока

На рис. 2.4.14. представлена схема параллельного соединения трансформаторов тока. Эту схему можно использовать с целью получения разных нестандартных коэффициентов трансформации. Схемы подключения счетчиков электроэнегии, как однофазных, так и 3-х фазных Вы можете найти тут.

Если трансформатор подключить наоборот

Трансформатор — это уникальное устройство, которое может работать как в одну, так и в другую сторону. То есть, как повышающий трансформатор может стать понижающим, так и наоборот. Например, если он рассчитан на подключении к его первичной обмотке напряжения 6 кВ, а на вторичной при этом должно появиться 0,4 кВ, то он также может работать и в другую сторону. Если на вторичную обмотку будет подано 0,4 кВ, то на первичной появится 6 кВ. Эта особенность может быть очень опасной при проведении профилактических и текущих ремонтов этого оборудования. Обязательно отключение их и с низкой, и с высокой стороны. Нужно помнить это правило при подготовке рабочих мест.

Обзор популярных моделей и производителей

Производством трансформаторов тока, через которые выполняется подключение к сети электросчетчиков, занимается множество компаний, в том числе с мировым именем. В таблице представлены наиболее востребованные модели с указанием их основных технических характеристик и ориентировочной стоимости на отечественном рынке

Как подключить понижающий трансформатор

Чаще всего установка трансформатора требуется чтобы понизить напряжение. Поэтому, как правильно подключить трансформатор такого понижающего назначения, вопрос который звучит очень часто. При подключении этого устройства, главное правильно выбрать его в соответствии с:

  • Величиной входного напряжения, то есть подаваемого на первичную;
  • Величиной выходного напряжения на выводах, их может быть несколько, в зависимости от конструкции;
  • Мощностью, которая зависит уже от мощности потребителей.

Подключение диодного моста к трансформатору может быть выполнено если есть необходимость получения постоянного напряжения. Вот схемы подключения диодного моста к однофазной, или к трёхфазной сети.

Схема 5 Схема 6

Аналоги трансформаторов

Существует огромное количество моделей токовых трансформаторов, которые, несмотря на различное обозначение, являются аналогами друг друга.

Подбор аналогичного устройства осуществляется посредством специальных таблиц, имеющихся на сайте каждого производителя. Например, трансформатор ТШ-0,66 может быть успешно заменен на устройства с маркировкой ТОП-0,66 или ТШП-0,66. А прибор ТПШЛ-10 — на трансформатор марки ТЛШ-10.

Симметрирующий трансформатор

Симметрирование

Если понижающий трансформатор нагружать неравномерно то произойдёт перекос фаз, что является отрицательно влияющим механизмом. Следствием такой работы и потребления электроприёмников будет увеличение потребления электроэнергии, а со временем сбои и преждевременное разрушение изоляции. Безопасность питающихся потребителей при этом будет под угрозой. Для того чтобы не допустить этого нужно симметрировать фазы, за счёт применения симметрирующих трансформаторов.

Как видно из схемы здесь есть дополнительная обмотка, которая должна выдерживать номинальной ток одной из фаз. Она включается в разрыв нулевого проводника, что приводит к неплохим результатам, то есть симметричному вырабатыванию равных токов в нагрузке.

Распространенные ошибки при подключении

Часто встречающейся ошибкой при подключении счетчика через трансформатор является установка без заземления общей точки вторичных обмоток токовых трансформаторов и трансформаторов напряжения.

Еще одной нередкой ошибкой можно назвать выполнение работ без соблюдения норм ПУЭ. Особенно это касается требований, касающихся сечения жил токовых цепей. Их минимальное сечение для медного провода должно составлять от 2,5 мм. кв. Для цепей напряжения с медными жилами — от 1,5 мм. кв. статью ⇒Выбивает автомат.

Оцените качество статьи. Нам важно ваше мнение:

Источник

Измерительный трансформатор тока

Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

  1. Особенности конструкции и принцип работы
  2. Виды трансформаторов тока
  3. Расшифровка маркировки
  4. Технические параметры
  5. Схемы подключения трансформаторов тока
  6. Силового оборудования
  7. Вторичные цепи
  8. Популярные виды и стоимость трансформаторов
  9. Возможные неисправности

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

Принцип работы трансформатора

  • первичной и вторичной обмоток;
  • замкнутого сердечника (магнитопровода).

Принцип работы трансформатора

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Учитывая характер условий эксплуатации, различают трансформаторы:

    для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

Три трансформатора тока для 3-х фаз(А, B? C)

Три трансформатора тока для 3-х фаз(А, B? C)
внутренние – применяемые внутри помещений;

ТТ для установки внутри помещений

ТТ для установки внутри помещений
встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

встроенный-та

Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

исполнение первичных обмоток

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

опорный и проходной та

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки

Расшифровка маркировки трансформаторов тока

Расшифровка маркировки трансформаторов тока

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

Формула по вычислению коэффициента трансформации

  1. Номинальным током – позволяющим аппарату функционировать длительное время, не перегреваясь;
  2. Номинальным напряжением – значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
  3. Коэффициентом трансформации; Формула по вычислению коэффициента трансформации

Значения

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки(обычно ток во вторичной обмотке равен 1А или 5А).
  • Погрешностью значения электротока – вызывается намагничиванием;
  • Номинальной нагрузкой, определяющей нормальную работу прибора;
  • Номинальной предельной кратностью – максимально допустимое значение отношения первичного значения электротока к номинальному;
  • Предельной кратностью вторичного тока – соотношение наибольшего тока вторичной обмотки к его номинальной величине.
  • Значения которыми могут обладать ТТ

    При выборе устройства необходимо учитывать значение указанных и других характеристик.

    Схемы подключения трансформаторов тока

    Силового оборудования

    Схема подключения для 110 кВ и выше:

    подключение тт на 110 кВ

    Схема подключения для 6-10 кВ в ячейках КРУ:

    подключение тт на 10 кв

    Вторичные цепи

    Схема включение трансформатора тока в полную звезду:

    1

    Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

    4

    Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

    3

    Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

    2

    Популярные виды и стоимость трансформаторов

    Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

    • ТТИ;
    • ТТН;
    • ТОП;
    • ТОЛ и другие.

    Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

    • 0,66 кВ от 300 – 5000,
    • 6-10 кВ 10000 – 45000,
    • 35 кВ – около 50 000р,
    • 110 кВ и выше – нужно уточнять у производителя.

    Возможные неисправности

    Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

    Читайте также:  Через идеальный емкостной элемент протекает ток

    Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

    Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

    Источник

    Правильный выбор трансформатора тока по ГОСТу

    Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

    В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

    Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

    Выбор номинальных параметров трансформаторов тока

    До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

    1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

    2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

    Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

    Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

    Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

    2.1 Проверка первичного тока на термическую стойкость производится по формуле:

    Формула проверки первичного тока ТТ на термическую устойчивость

    Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

    iуд — ударный ток короткого замыкания

    kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

    2.2 Проверка первичного тока на электродинамическую стойкость:

    Формула проверки первичного тока ТТ на динамическую устойчивость

    В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

    Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

    выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

    3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

    Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

    Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

    Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

    Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

    Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

    формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

    zр — сопротивление реле

    rпер — переходное сопротивление контактов

    rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

    Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

    Выбор ТТ для релейной защиты

    Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

    значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

    Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

    Выбор трансформаторов тока для цепей учета

    К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

    ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

    По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

    Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

    значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

    Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

    Таблица предварительного выбора трансформатора тока по мощности и току

    предварительная таблица выбора ТТ по мощности

    Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

    • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
    • при 25%-ой нагрузке вторичный ток больше 5% от 5А

    Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

    К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

    Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

    Сохраните в закладки или поделитесь с друзьями

    Источник

    

    Измерительные трансформаторы тока — назначение, устройство, виды конструкций

    Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

    Читайте также:  Швейная машина бьет током причины

    Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

    Назначение и устройство ИТТ

    Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

    Как устроен измерительный трансформатор тока

    Конструкция измерительного трансформатора тока

    Обозначения:

    1. Первичная обмотка с определенным количеством витков (W1).
    2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
    3. Вторичная обмотка (W2 — число витков).

    Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

    Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

    В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

    Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

    Перечень основных параметров

    Технические характеристики трансформатора тока описываются следующими параметрами:

    • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
    • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
    • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
    • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

    Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

    Технические характеристики измерительного трансформатора тока ТТ-В

    Перечень основных параметров измерительного трансформатора тока ТТ-В

    Виды конструкций измерительных трансформаторов

    В зависимости от исполнения, данные устройства делятся на следующие виды:

    Катушечный ИТТ

    1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

    Обозначения:

    Пример установки встроенного ТТ

    • A – Клеммная колодка вторичной обмотки.
    • В – Защитный корпус.
    • С – Контакты первичной обмотки.
    • D – Обмотка (петлевая или восьмерочная) .
    1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
    • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

    Обозначения:

    • А – встроенный ТТ.
    • В – изолятор силового ввода трансформатора подстанции.
    • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
    1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schneider ElectricШинные ТТ производства Schneider Electric
    1. Разъемными. Особенность данной конструкции заключается в том, что магнитопровод ТТ может разделяться на две части, которые стягиваются между собой специальными шпильками.Разъемный ТТ

    Такой вариант конструкции существенно упрощает монтаж/демонтаж.

    Расшифровка маркировки

    Обозначение отечественных моделей интерпретируется следующим образом:

    • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
    • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
    • Третьей литерой шифруется исполнение изоляции.
    • Цифрами указывается класс напряжения (в кВ).
    • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
    • КТ, с указанием номинального тока первичной и вторичной обмотки.

    Приведем пример расшифровки маркировки трансформатора тока.

    Шильдик на ТТ с указанием его марки

    Шильдик на ТТ с указанием его марки

    Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

    Схемы подключения

    Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

    Подключение трехобмоточного ТТ «звездой» и «треугольником»

    Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

    При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

    Пример как подключить ТТ на разность двух фаз (А) и неполной звездой (В)

    Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

    Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

    Подключения: А – для суммы токов всех фаз, В и С - последовательное и параллельное включение двухобмоточных ТТ

    Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

    В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

    Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

    Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

    Выбор

    При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

    Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

    Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

    • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
    • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
    • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

    Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

    Пример расчета ТТ

    Пример расчета трансформатора тока

    Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

    Обслуживание

    Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

    • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
    • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
    • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
    • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
    • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
    • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
    • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

    Источник