Меню

Принцип действия трехфазного генератора переменного тока

Трехфазный генератор: общее устройство, принцип действия, симметричная система фазных ЭДС

Структура трехфазной цепи.

Тема 5. Трехфазные цепи.

Трехфазными генераторами называются генераторы переменного тока, одновременно вырабатывающие несколько ЭДС одинаковой частоты, но с различными начальными фазами. Совокупность таких ЭДС называется трехфазной системой ЭДС.

Многофазными цепями называются цепи переменного тока, в которых действуют многофазные системы ЭДС. Любая из цепей многофазной системы, где действует одна ЭДС, называется фазой.

Наибольшее распространение получили трехфазные системы. История их возникновения и развития связана с изобретением М.О. Доливо-Добровольским трехфазного асинхронного двигателя и трехфазного трансформатора.

Трехфазные системы имеют ряд преимуществ перед другими системами (однофазными и многофазными):

— они позволяют легко получить вращающееся магнитное поле (на этом основан принцип работы разных двигателей переменного тока).

— трехфазные системы наиболее экономичны, имеют высокий КПД.

— конструкция трехфазных двигателей, генераторов и трансформаторов наиболее проста, что обеспечивает их высокую надежность.

— один трехфазный генератор позволяет получать два различных (по величине) напряжения.

Современные электрические системы, состоящие из генераторов, электростанций, трансформаторов, линий передачи электроэнергии и распределительных сетей, представляют собой в подавляющем числе случаев трехфазные системы переменного тока.

Трехфазная система электрических цепей представляет собой совокупность электрических цепей, в которых действуют три синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии. Каждая из цепей, входящих в трехфазную цепь, принято называть фазой. В данном случае не следует путать понятие фазы в многофазной системе с понятием начальной фазы синусоидальной величины.

В зависимости от числа фаз цепи бывают однофазные, двухфазные, трехфазные, шестифазные и т.д. Трехфазные цепи более экономичны чем однофазные.

Трехфазная цепь включает в себя источник (генератор) трехфазной ЭДС, проводники, потребители (приемники) трехфазной электрической энергии.

Рассмотрим устройство трехфазного генератора переменного тока. В пазах статора расположены три фазных обмотки (они условно представлены единственными витками). Начала и концы обмоток трехфазного генератора принято обозначать буквами и . Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Началом обмотки называют зажим, через который ток поступает во внешнюю цепь при положительных его значениях.

Ротор генератора выполняется в виде вращающегося постоянного магнита или электромагнита, питаемого через скользящие контакты постоянным током.

При вращении ротора с помощью двигателя в обмотках статора возникают периодически изменяющиеся ЭДС, частота которых одинакова, но фазы в любой момент времени различны, так как различны положения обмоток в магнитном поле. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем вращающегося ротора. Обмотки фаз генератора совершенно одинаковы и расположены симметрично по поверхности статора, поэтому ЭДС имеют одинаковые амплитудные значения, но сдвинутые друг относительно друга по фазе на угол 120 .

Если ЭДС фазы принять за исходную и считать ее начальную фазу равной нулю, то при вращении ротора с угловой скоростью против часовой стрелки выражения для мгновенных значений ЭДС можно записать следующим образом:

Переходя к комплексам действующих значений, получим:

Подобные системы ЭДС принято называть симметричными. Векторная диаграмма трехфазной симметричной системы ЭДС представляет собой симметричную трехлучевую звезду. Из векторной диаграммы следует, что

Если ЭДС фазы отстает от фазы , а ЭДС фазы отстает от ЭДС фазы , то такую последовательность фаз называют прямой. Обратную последовательность фаз можно получить, если изменить направление вращения ротора.

Если отдельные фазные обмотки генератора не соединены между собой электрически, то такую цепь называют несвязанной. По сути дела несвязанная трехфазная цепь состоит из трех независимых однофазных цепей. В противном случае трехфазная цепь называется связанной. Наибольшее распространение получили связанные трехфазные цепи, как наиболее экономичные, имеющие минимальное число проводов. При нормальном режиме работы трехфазных установок последовательность фаз принимается прямая.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Модель генератора с магнитным ротором

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Строение синхронного генератора средней мощности

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

Читайте также:  Чем опасен статический ток

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Схема регулировки напряжения

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Схема подключения генератора к бортовой сети авто

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Источник

Как устроен генератор переменного тока — назначение и принцип действия

Люди пользуются энергией электрического тока практически во всех сферах своей деятельности. Сейчас нелегко представить жизнь без электричества, которое с помощью специального оборудования преобразуется из механической энергии. Рассмотрим подробнее, как происходит этот процесс, и как устроены современные генераторы.

Как устроен генератор переменного тока - назначение и принцип действия

Превращение механической энергии в электрическую

Любой генератор работает по принципу магнитной индукции. Самый простой генератор переменного тока можно представить, как катушку, которая вращается в магнитном поле. Также есть вариант, при котором катушка остается неподвижной, но магнитное поле только её пересекает. Именно во время этого движения и вырабатывается переменный ток. По такому принципу функционирует огромное количество генераторов во всем мире, объединенных в систему электроснабжения.

Устройство и конструкция генератора переменного тока

Стандартный электрогенератор имеет следующие компоненты:

Как устроен генератор переменного тока - назначение и принцип действия

  • Раму, к которой закреплен статор с электромагнитными полюсами. Изготовлена она из металла и должна выполнять защитную функцию всех элементов механизма.
  • Статор, к которому крепится обмотка. Изготавливается он из ферромагнитной стали.
  • Ротор – подвижный элемент, на сердечнике которого располагается обмотка, образующая электрический ток.
  • Узел коммутации, который отводит электричество с ротора. Представляет собой систему подвижных токопроводящих колец.

В зависимости от назначения, генератор имеет определенные особенности конструкции, но существуют два компонента, которыми обладает любое устройство, конвертирующее механическую энергию в электричество:

  1. Ротор – подвижная цельная деталь из железа;
  2. Статор – неподвижный элемент, который изготовлен из железных листов. Внутри него есть пазы, внутри которых располагается проволочная обмотка.

Для получения большей магнитной индукции, между этими элементами должно быть небольшое расстояние. По своей конструкции генераторы бывают:

  • С подвижным якорем и статическим магнитным полем.
  • С неподвижным якорем и вращающимся магнитным полем.

В настоящее время более распространено оборудование с вращающимися магнитными полями, т.к. значительно удобнее снимать электрический ток со статора, чем с ротора. Устройство генератора имеет немало сходств с конструкцией электродвигателя.

Читайте также:  Что представляют собой линии магнитной индукции прямого проводника с током

Как устроен генератор переменного тока - назначение и принцип действия

Схема генератора переменного тока

Принцип работы электрогенератора: в тот момент, когда половина обмотки находится на одном из полюсов, а другая на противоположном, ток движется по цепи от минимального до максимального значения и обратно.

Классификация и виды агрегатов

Все электрогенераторы можно распределить по критерию работы и по типу топлива, из которого и образуется электроэнергия. Все генераторы делятся на однофазные (выход напряжения 220 Вольт, частота 50 Гц) и трехфазные (380 Вольт с частотой 50 Гц), а также по принципу работы и типу топлива, которое конвертируется в электричество. Ещё генераторы могут использоваться в разных сферах, что определяет их технические характеристики.

По принципу работы

Разделяют асинхронные и синхронные генераторы переменного тока.

Асинхронный

У асинхронных электрогенераторов нет точной зависимости ЭДС от частоты вращения ротора, но здесь работает такой термин, как «скольжение S». Оно определяет эту разницу. Величина скольжения вычисляется, поэтому некоторое влияние элементов генератора в электромеханическом процессе асинхронного двигателя все же есть.

Синхронный

Как устроен генератор переменного тока - назначение и принцип действия

Такой генератор обладает физической зависимостью от вращательного движения ротора к генерируемой частоте электроэнергии. В таком устройстве ротор является электромагнитом, состоящим из сердечников, обмоток и полюсов. Статором являются катушки, которые соединены по принципу звезды, и имеющими общую точку – ноль. Именно в них вырабатывается электрический ток.
Ротор приводит в движение посторонняя сила подвижных элементов (турбин), которые двигаются синхронно. Возбуждение такого генератора переменного тока может быть, как контактным, так и бесконтактным.

По типу топлива двигателя

Удаленность от электросети с появлением генераторов больше не становится препятствием для пользования электроприборами.

Газовый генератор

Как устроен генератор переменного тока - назначение и принцип действия

В качестве топлива здесь используется газ, во время сгорания которого и вырабатывается механическая энергия, которая затем заменяется электрическим током. Преимущества использования газогенератора:

  • Безопасность для окружающей среды, ведь газ при сгорании не выделяет вредных элементов, копоти и токсичных продуктов распада;
  • Экономически это очень выгодно – сжигать дешевый газ. В сравнении с бензином, это обойдется значительно дешевле;
  • Подача топлива осуществляется автоматически. Бензин и дизельное топливо требуется по мере необходимости подливать, а газовый генератор обычно подключают к системе газоснабжения;
  • Благодаря автоматике, аппарат приходит в действие самостоятельно, но для этого он должен располагаться в теплом помещении.

Дизельный генератор

Как устроен генератор переменного тока - назначение и принцип действия

Эту категорию составляют преимущественно однофазные агрегаты мощностью 5 кВт. 220 Вольт и частота 50 Гц являются стандартными для бытовой техники, поэтому дизельный аппарат неплохо справляется со стандартной нагрузкой. Как можно догадаться, для его работы требуется дизельное топливо. Почему стоит выбрать именно дизельный электрогенератор:

  • Относительная дешевизна топлива;
  • Автоматика, позволяющая автоматически запускать генератор при прекращении подачи электрического тока;
  • Высокий уровень противопожарной безопасности;
  • В течении длительного периода времени агрегат на дизеле способен проработать без сбоев;
  • Внушительная долговечность – некоторые модели способны работать в общей сумме 4 года непрерывной эксплуатации.

Бензогенератор

Как устроен генератор переменного тока - назначение и принцип действия

Такие аппараты довольно востребованы как бытовое оборудование. Несмотря на то, что бензин дороже газа и дизеля, такие генераторы имеют немало сильных сторон:

  • Малые габариты при высокой мощности;
  • Просты в эксплуатации: большинство моделей можно запустить вручную, а более мощные генераторы оснащены стартером. Регулируется напряжение под определенную нагрузку при помощи специального винта;
  • В случае перегрузки генератора автоматически срабатывает защита;
  • Просты в обслуживании и ремонте;
  • Во время работы не издают много шума;
  • Можно применять и в помещении, и на улице, но следует защищать от попадания влаги.

Источник



Трехфазные генераторы: устройство и принцип работы, правила подключения

  1. Устройство
  2. Принцип работы
  3. Преимущества и недостатки
  4. Виды
  5. Как выбрать?
  6. Схемы подключения

Трехфазный генератор находит широкое применение в частном секторе. Такие электрогенераторы имеют мощность 6, 10, 15 кВт и выше. В этой статье рассмотрены схема и принцип работы таких устройств, указаны их основные различия и правила подключения.

Устройство

Назначение электрического генератора – преобразовывать механическую энергию в электрическую. Он состоит из 2-х основных частей – подвижного ротора и неподвижного статора.

  • Ротор закрепляется на подшипниках. С одной стороны к нему присоединяется привод от внешнего источника движения, а с другой – крыльчатка для охлаждения.
  • Статор – неподвижный элемент. На нем расположены лапы крепления установки, охлаждающие ребра и выходные клеммы. А еще табличка с техническими характеристиками.

Другие составные части.

  • Скользящий контакт ротора. Необходим для питания его обмоток или отвода генерируемого электричества. В большинстве моделей его нет.
  • Средства индикации и контроля.
  • Боковые крышки.
  • Масленки для подачи смазки к подшипникам и другие не менее важные элементы.

Теперь нужно разобраться в методе получения электричества.

Принцип работы

Принцип действия трехфазных генераторов основан на законе электромагнитной индукции. Он гласит: на концах металлической рамки, помещенной во вращающееся магнитное поле, будет индуцироваться электродвижущая сила (ЭДС). При этом может вращаться как сама рамка, так и магниты.

Так устроены демонстрационные модели. В реальных генераторах вместо рамки применяется катушка из тонкого медного провода с изолированными друг от друга жилами. Это делается для увеличения коэффициента полезного действия установки.

Так работает однофазный генератор. Для получения 3-фазного тока обмоток должно быть 3. При этом они располагаются по окружности, и угол между ними (его называют угол сдвига фаз) составляет 120 градусов.

В современных моделях 3-х фазных генераторов в качестве магнита выступает ротор. При этом магнит может быть постоянным или электрическим. В последнем случае для питания ротора применяют скользящий контакт с графитовыми щетками. Для запуска такого устройства нужен отдельный источник электроэнергии.

Силовая обмотка располагается в статоре. Это убирает необходимость передавать большие токи через скользящий контакт и повышает надежность работы.

Преимущества и недостатки

3-х фазные генераторы переменного тока имеют целый ряд достоинств.

  1. Более высокий коэффициент полезного действия по сравнению с однофазными. Это значит, что для получения одинаковой мощности тока требуется меньше топлива.
  2. С одного генератора возможно получение 2-х значений напряжения, отличающихся в 1,75 раза. Обычно это 380 В и 220 В. Это расширяет сферу его применения, такой генератор можно использовать и в частном доме, и в промышленности.
  3. При одинаковой мощности они обладают меньшими габаритными размерами и массой, чем однофазные.
  4. Для передачи 3-х фазного тока нужно 3 или 4 провода. Для работы 3-х однофазных генераторов проводов нужно минимум 6.
  5. Более высокая надежность установки.
  6. Для работы большинства промышленного оборудования нужен именно 3-х фазный ток. Применение такого генератора решает эту задачу.
  7. Для получения однофазного напряжения можно подключить только 1 обмотку. Но это не лучшее решение с точки зрения экономичности.
  8. Из переменного тока с помощью выпрямителя можно сделать постоянный.
Читайте также:  Как найти частоту тока статора трехфазного 4 полосного двигателя

Такие генераторы имеют и недостатки.

  1. Относительная сложность подключения с юридической точки зрения. Для легального подведения 3-х фазного напряжения требуется специальное разрешение от энергокомпании. А получить его весьма хлопотно.
  2. Необходимо усиление средств безопасности. Нужно больше устройств защиты, УЗО необходимо ставить на каждую фазу.
  3. Работающий генератор не рекомендуется оставлять без присмотра. Нужно следить за показаниями контрольно-измерительной аппаратуры.
  4. Шум и вибрация при работе устройства.

3-фазные генераторы переменного тока не имеют сильных различий между собой. Они отличаются лишь мощностью и особенностями конструкции.

По мощности вырабатываемого тока они бывают:

  • 5 кВт;
  • 6 кВт;
  • 10 кВт;
  • 12 кВт;
  • 15 кВт и более.

Надо сказать, что это стандартный ряд мощности, и он не является абсолютным. Производители могут изготавливать машины и с другими характеристиками.

Кроме того, реальная выходная мощность зависит от многих факторов, таких как качество и чистота топлива, состояние атмосферы (на холоде и при высокой влажности мощность уменьшается) и тому подобное.

По виду применяемого топлива генераторы бывают:

  • дизельные;
  • бензиновые;
  • работающие на дровах или природном газе.

Наибольшее распространение получили первые 2 варианта. При этом дизельные, в силу своей конструкции, надежнее, поскольку работают без системы зажигания. Еще они более экономичные. Бензиновые, в свою очередь, легче запускаются в сложных условиях.

Модели на газу не так эффективны в частном пользовании, и потому менее распространены.

По принципу действия генераторы бывают синхронные и асинхронные.

  • Синхронные. Их достоинство – могут выдержать кратковременную перегрузку в 5-6 раз. Такое бывает при запуске некоторых типов электродвигателей и другого мощного оборудования, когда пусковые токи значительно превышают номинальные. Но у них есть недостатки – это большие габариты и масса, а также меньшая надежность по сравнению с асинхронными собратьями.

  • Асинхронные. Их основные черты – легкость, компактность, простота конструкции и безотказность работы. Но они сразу выходят из строя при перегрузке. Поэтому максимально вырабатываемая ими мощность должна быть значительно выше, чем расходуемая потребителями (раза в 3 – 4). Вдобавок рекомендуется ставить качественную и дорогую защиту от перегрузок.

Также генераторы могут обладать дополнительными функциями:

  • возможность подключения дополнительных линий для увеличения нагрузочной способности;
  • регулировка характеристик выходного тока (например, его формы);
  • наличие электромагнитного реле-регулятора.

По назначению генераторы бывают:

  • основные;
  • вспомогательные.

Они различаются только способом подключения.

Это все, что касается классификации генераторов. Теперь давайте поговорим о выборе этого устройства.

Как выбрать?

При покупке в первую очередь ориентируйтесь на условия, в которых будет работать генератор.

  • Для начала определите требуемую мощность. Она должна превышать суммарную мощность одновременно включенных потребителей. Рекомендуется иметь небольшой (или большой) запас на случай экстренных ситуаций.
  • Выберите вид топлива. Решите, что для вас важнее – экономичность или способность запуститься в любых условиях.
  • Если в сети возможны перегрузки, нужно покупать синхронную модель. Но учтите, что она потребует более тщательного обслуживания, чем асинхронная, и обладает меньшим сроком службы. Да и на систему защиты придется потратиться. Если перегрузки полностью исключены, лучшим выбором станет асинхронный генератор.

Затем проверьте качество изготовления.

  • Покрутите ротор рукой. Он должен вращаться легко. Хруст, щелчки и рывки в подшипниках не допускаются, как и биение ротора. Он не должен шататься в подшипниках.
  • Контакты и клеммы должны быть блестящими. Не допускается сорванная резьба. Если есть провода, требуется их надежная изоляция. Особенно в местах стыков и перегибов.
  • На статоре и каркасе не должно быть трещин. Внимательно осмотрите опорную часть.
  • Проверьте генератор в работе. Показания измерительной аппаратуры должны быть стабильными. Звук выхлопа обязан быть ровным.
  • Ответственные производители внимательно окрашивают изделие и хорошо крепят логотип. Если краска вызывает сомнения, от такого генератора лучше отказаться.
  • Солидность любой фирмы определяется качеством сервиса. Убедитесь, что при возникновении неисправности вы сможете найти специалиста для ее устранения.

Затем обратите внимание на дополнительные функции.

  • Хорошо, если на заводе уже будут смонтированы измерительные приборы.
  • Лучше покупать модели, имеющие как ручной запуск, так и со стартера.
  • Проверьте удобство транспортировки. Если есть колесики, они должны хорошо крутиться. Если есть ручки, за них должно быть удобно держаться.

И не бойтесь задавать вопросы консультантам, даже, по их мнению, нелепые. Время, которое вы потратите на выбор, с лихвой компенсируется беспроблемной эксплуатацией.

Но мало выбрать хороший генератор, его еще надо правильно подключить.

Схемы подключения

Главная задача при подключении к имеющейся энергосети – не допустить «встречи» генерируемого тока и поступающего с электростанции. Иначе последствия будут плачевными.

Для решения этой задачи существует несколько методов подключения генератора к электросети.

Через розетку

Самый простой метод. Потребители подключаются к генератору напрямую. Но есть серьезные недостатки:

  • полное отсутствие защитных устройств;
  • нужно купить специальную 4-х полюсную розетку, рассчитанную на большой ток.

Применять этот метод настоятельно не рекомендуется. Мы написали про него только потому, что он есть.

Через распределительный автомат

Это более удобный способ, поскольку он не требует внесения изменений в имеющуюся электросеть. Особенно хорошо он зарекомендовал себя в частных домах.

Для подключения сделайте следующее.

  • Отключите вводной автомат централизованной системы электрораспределения. Проще говоря, обесточьте дом.
  • Установите в щитке новый 4-х полюсный автомат. Его выходные контакты соедините с домашней сетью.
  • Внимательно подключите к новому автомату кабель с генератора. Все провода присоединяются к соответствующим клеммам.

4-ый полюс нужен для нулевого провода.

Через рубильник

Основной недостаток предыдущей схемы – возможность попадания сетевого напряжения на генератор. Такое может случиться при невнимательном пользовании переключателями. Чтобы такого не произошло, генератор можно подключить через рубильник.

Такое подключение полностью исключает возможность замыкания. Рубильник имеет 3 контакта:

  • первый – питание потребителей от централизованной сети;
  • третий – питание от генератора;
  • центральный – сеть полностью обесточена.

Потребители подключаются к центральному контакту.

После рубильника обязательно устанавливаются предохранители, УЗО и другие средства защиты.

Такими способами подключаются основные генераторы.

Система автоматического включения

Основной недостаток этих всех методов – ручное управление. А иногда нужно, чтобы генератор запускался автоматически (особенно при аварийных ситуациях). В этих случаях применяется система автоматического включения.

В нее входят 2 пускателя с перекрестным включением и модуль управления. При пропадании электричества они отключают потребителей от централизованной системы и подключают к генератору.

Независимо от метода подключения никогда не забывайте заземлять корпус генератора. И главное: коммутационные устройства, выключатели и предохранители ставить в заземляющий провод запрещается. Это убережет от несчастных случаев и гарантирует безопасность работы прибора.

О том, какой купить генератор: однофазный или трехфазный, смотрите далее.

Источник